标签:code only 判断 否则 || for square imp lan
Implement int sqrt(int x)
.
Compute and return the square root of x, where x is guaranteed to be a non-negative integer.
Since the return type is an integer, the decimal digits are truncated and only the integer part of the result is returned.
Example 1:
Input: 4 Output: 2
Example 2:
Input: 8 Output: 2 Explanation: The square root of 8 is 2.82842..., and since the decimal part is truncated, 2 is returned.
题目大意:
给定非负整数x,求x的平方根
理 解 :
方法一:暴力法,从i=1开始向后找,找到满足条件的i。应满足i*i<=x && (i+1)*(i+1)>x
但这样有个弊端,即 i*i 会超过INT_MAX.所以应写为x/i>=i && x/(i+1)<(i+1)
这个方法的效率很低,尤其当x很大时。
方法二:用类似于二分法的方法找到满足条件的平方根mid。
初始区间为[0,x]:mid为区间中间的值,
当 x/mid < mid 时,右区间为mid
当 x/mid = mid 时,mid即为x的平方根
当 x/mid > mid 时,判断是否满足 x/(mid+1) < (mid+1) ,满足则mid为x的平方根;否则,左区间为mid
更新mid为当前区间中间的值。效率明显很好。
代 码 C++ :
方法一:
class Solution { public: int mySqrt(int x) { if(x==0 || x==1) return x; for(int i=1;i<=x/2;++i){ if(x/i>=i && x/(i+1)<(i+1)) return i; } return x; } };
方法二:
class Solution { public: int mySqrt(int x) { if(x==0 || x==1) return x; int left=0,right=x,mid=x; while(left<=right){ mid = (right-left)/2+left; if(x/mid<mid){ right = mid; }else if(x/mid == mid){ return mid; }else{ if(x/(mid+1)<(mid+1)) return mid; left = mid; } } return x; } };
运行结果 :
方法一:执行用时 : 240 ms 内存消耗 : 8.3 MB
方法二:执行用时 : 0 ms 内存消耗 : 8.3 MB
标签:code only 判断 否则 || for square imp lan
原文地址:https://www.cnblogs.com/lpomeloz/p/10983097.html