码迷,mamicode.com
首页 > 其他好文 > 详细

CF1175E Minimal Segment Cover

时间:2019-06-06 16:04:04      阅读:89      评论:0      收藏:0      [点我收藏+]

标签:题目   force   cpp   vector   lin   clu   stream   minimal   http   

题目链接

题意

给出n条线段。m次询问,每次询问给出一个区间\([l,r]\)问最少需要多少条线段才能覆盖区间\([l,r]\)
所有坐标\(\le 5\times 10^5\)\(n,m\le 2\times 10^ 5\)

思路

其实是比较经典的线段覆盖问题。

\(f[i][j]\)表示从i开始走\(2^j\)条线段最远到达的位置。

然后对于每次询问都走一遍即可。

代码

/*
* @Author: wxyww
* @Date:   2019-06-06 10:55:48
* @Last Modified time: 2019-06-06 14:54:02
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 1000000 + 100,logN = 23;
ll read() {
    ll x=0,f=1;char c=getchar();
    while(c<'0'||c>'9') {
        if(c=='-') f=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9') {
        x=x*10+c-'0';
        c=getchar();
    }
    return x*f;
}
int f[N][logN + 1];
int query(int l,int r) {
    ll ans = 0;
    for(int i = logN - 1;i >= 0;--i) { 
        if(f[l][i] < r) {
            l = f[l][i];
            ans += (1 << i);
        }
    }
    l = f[l][0];ans++;
    if(l < r) return -1;
    return ans;

}
int main() {
    int n = read(),m = read();
    int mx = 0;
    for(int i = 1;i <= n;++i) {
        int l = read() + 1,r = read() + 1;
        f[l][0] = max(f[l][0],r);
        mx = max(mx,r);
    }

    for(int i = 1;i <= mx;++i) f[i][0] = max(f[i][0],max(i,f[i - 1][0]));

    for(int j = 1;j < logN;++j) 
        for(int i = 1;i <= mx;++i) 
            f[i][j] = f[f[i][j - 1]][j - 1];

    while(m--) {
        int l = read() + 1,r = read() + 1;
        printf("%d\n",query(l,r));
    }
    return 0;
}

CF1175E Minimal Segment Cover

标签:题目   force   cpp   vector   lin   clu   stream   minimal   http   

原文地址:https://www.cnblogs.com/wxyww/p/CF1175E.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!