标签:场景 try rate foldleft def byte string pes 多个
经常有一些需要做id打通的场景,比如用户id打通等,
问题抽象是每条数据都可以解析出一个或多个kv pair:(id_type,id),然后需要将某一个kv pair匹配的多条数据进行merge;
比如:
data1: Array((‘type1‘, ‘id1‘), (‘type2‘, ‘id2‘))
data2: Array((‘type1‘, ‘id1‘), (‘type3‘, ‘id3‘))
data3: Array((‘type2‘, ‘id2‘), (‘type4‘, ‘id4‘))
其中data1和data2通过(‘type1‘, ‘id1‘)打通,data1和data3通过(‘type2‘, ‘id2‘)打通,最终data1、data2、data3打通成一条数据
data_union: Array((‘type1‘, ‘id1‘), (‘type2‘, ‘id2‘), , (‘type3‘, ‘id3‘), , (‘type4‘, ‘id4‘))
先定义基础类和方法
class Data { def getId : String = "" } def merge(dataArr : Array[(Map[Byte, String], Data)]) : (Map[Byte, String], Data) = dataArr.head def generateUUID : String = ""
其中
1)Data表示数据抽象,每条数据都有一个id;
2)Map[Byte, String]表示数据中的kv pair,即 Map[id_type, id]
3)merge将多条数据打通成一条数据;
先看最简单的递归实现
def unionDataRDD1(rdd : RDD[(Map[Byte, String], Data)]) : RDD[(Map[Byte, String], Data)] = { var result = rdd.keyBy(_._2.getId).groupByKey.map(item => merge(item._2.toArray)).cache //Array[id_type] val idTypes = result.flatMap(item => item._1.keys).distinct.collect idTypes.foreach(item => result = result.filter(_._1.contains(item)).keyBy(_._1.get(item).get).groupByKey.map(item => merge(item._2.toArray)).union(result.filter(!_._1.contains(item)))) result }
性能不太好,再看优化后的非递归实现
def unionDataRDD2(rdd : RDD[(Map[Byte, String], Data)]) : RDD[(Map[Byte, String], Data)] = { val result = rdd.keyBy(_._2.getId).groupByKey.map(item => merge(item._2.toArray)).cache //((id_type, id), group) val idGroupRDD = result.flatMap(item => {val uuid = generateUUID; item._1.toArray.map(entry => (entry, uuid))}).cache //Array(Array(group)) val unionMap = idGroupRDD.groupByKey.map(_._2.toArray.distinct).filter(_.length > 1).collect //Map(group -> union_group) .foldLeft(Map[String, String]())((resultUnion, arr) => { val existingGroupMap = arr.collect({case group : String if resultUnion.contains(group) => (group, resultUnion.get(group).get)}).toMap if (existingGroupMap == null || existingGroupMap.isEmpty) resultUnion ++ arr.collect({case group : String => (group -> arr.head)}).toMap else if (existingGroupMap.size == 1) resultUnion ++ arr.collect({case group : String => (group -> existingGroupMap.head._2)}).toMap else { val newUnionMap = existingGroupMap.map(_._2).collect({case group : String => (group -> existingGroupMap.head._2)}).toMap resultUnion.collect({case entry : (String, String) => if (newUnionMap.contains(entry._2)) (entry._1, newUnionMap.get(entry._2).get) else entry}) ++ arr.collect({case group : String => (group -> newUnionMap.head._2)}).toMap } })
over了
标签:场景 try rate foldleft def byte string pes 多个
原文地址:https://www.cnblogs.com/barneywill/p/10987452.html