码迷,mamicode.com
首页 > 其他好文 > 详细

穷举(三):建模分析后穷举

时间:2019-06-13 12:05:38      阅读:111      评论:0      收藏:0      [点我收藏+]

标签:ace   guess   状态   表示   建模   其他   spl   info   输出   

      有些问题没有明确的区间限制,可根据问题的具体实际进行建模分析,再确定穷举对象及范围进行穷举。

【例7】质数幻方

      通常的n阶幻方是由1,2,…,n2构成的各行、各列与两对角线之和均相等n行n列方阵。质数幻方则全是由质数构成的各行、各列与两对角线之和均相等的方阵。

      例如: 17  113   47

                 89   59   29

                 71    5  101    

就是一个3阶质数幻方。方阵中9个质数的总和为531。

      试寻求9个质数,构造一个3阶质数幻方,使得该质数方阵中3行、3列与两对角线上的3个质数之和均不超过1000。

你能找出多少种这样的幻方呢?

      (1)编程思路。

      本题除了限定9个质数的总和不超过3000外,并没有明确给出穷举的对象和区间范围。因此,需要仔细分析后,确定需要穷举的变量及范围。

      设幻方正中间数为n,9个质数的总和为s,每行的和为s/3。由于

          (中间一行)+(中间一列)+ 2 *(两条对角线)= 2s

          (上下两行)+ (左右两列)=  4s/3   

      两式相减即得

           6n=2s/3    所以   n=s/9

      这意味着凡含n的行或列或对角线的三个数中,除n之外的另两数的和为n的两倍(s/3-s/9=2s/9),它们与n相差等距。

      为此,可设3阶幻方为:

        n-x   n+w   n-y

        n+z    n    n-z

        n+y   n-w   n+x

      同时设定方阵的两对角线的三数为大数在下(即x,y>0),下面一行三数为大数在右(即x>y)。这样设定是避免重复统计解。

      显见,上述3×3方阵的中间一行,中间一列与两对角线上三数之和均为3n。要使左右两列,上下两行的三数之和也为3n,当且仅当

         z= x-y

         w= x+y     (x>y)

      由于填入幻方的9个质数中不能有偶质数2,因而x,y,z,w都只能是正偶数。

      定义一个数组a[3000],用于保存一个质数表,为后面的判断提供依据。数组元素a[k]=1表示k为质数,a[k]=0表示k不是质数。

      对于27~3000之间的整数s,如果存在总和为s的质数幻方,则s应为中间质数n的9倍,且s不能为偶数(否则中间数n为偶数,一定不是质数)。若a[s/9]==0,则中间数n不是质数,显然不存在总和为s的质数幻方,直接进行下次穷举(s=s+18)。

      设幻方中的质数下界为c,上界为d,则有

c=3

d=2n-3    (因为 d+n+c= s/3 = 3n)

由于  n-y≥3   (n+y)+n+(n-y)=s/3

可得  2n+y = s/3 - (n-y) ≤ s/3 - 3

即         y ≤ s/3 - 2n-3 = 3n-2n-3 =n-3

同理可得   x≤s-2n-3=n-3

      这样,可以在区间[2,n-3] 中穷举偶数y,在区间[y+2,n-3]穷举偶数x,并按z= x-y、w= x+y求得z,w。

      若出现x=2y,将导致z=y,方阵中出现两对相同的数,显然应予排除。

      由于n-w是9个数中最小的,n+w是9个数中最大的。若n-w<c或n+w>d,已超出质数的[c,d]界限,也应予以排除。

      按穷举变量s、x和y确定了方阵中的9个数后,检测方阵中其他8个数n-x,n+w,n-y,n+z,n-z,n+y,n-w,n+x是否同时为质数,若8个数中存在非质数,进行下次穷举;否则,已找到一个三阶质数幻方解,按方阵格式输出并用变量cnt统计基本解的个数。

       (2)源程序及运行结果

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

       int c,d,k,n,t,t1,t2,s,w,x,y,z,cnt;

    int a[3000];

    for(k=2;k<3000;k++)

          a[k]=1;

    for(k=2;k<3000;k++)  // 构造质数表,a[k]=1表示k为质数 

    {

       if (a[k]==1)

       {

          for(t=2*k;t<3000;t+=k)

            a[t]=0;     // t不是质数,令a[t]=0

          }

       }

    cnt=0;

     for (s=27;s<=3000;s+=18)

     {

            n=s/9;

            if (a[n]==0)

                 continue;

           c=3;  d=2*n-3; 

           for(y=2;y<=n-3;y+=2)

           for(x=y+2;x<=n-3;x+=2)

            {

                 z=x-y;w=x+y;

                if(x==2*y || n-w<c || n+w>d)

                      continue;       // 控制幻方的质数范围 

                t1=a[n-w]*a[n+w]*a[n-z]*a[n+z];

                t2=a[n-x]*a[n+x]*a[n-y]*a[n+y];

                if(t1*t2==0) continue;   // 控制其余8个均为质数

                    cnt++;                   

                cout<<"NO :"<<cnt<<endl;   // 统计并输出三阶质数幻方         

                cout<<setw(5)<<n-x<<setw(5)<<n+w<<setw(5)<<n-y<<endl;

                cout<<setw(5)<<n+z<<setw(5)<<n<<setw(5)<<n-z<<endl;

                cout<<setw(5)<<n+y<<setw(5)<<n-w<<setw(5)<<n+x<<endl;

                cout<<"Sum="<<s<<endl;

             }

       }

    cout<<"共有 "<<cnt<<" 个质数幻方"<<endl;

    return 0;

}

【例8】熄灯问题

      有一个由按钮组成的矩阵,其中每行有6个按钮,共5行。每个按钮的位置上有一盏灯。当按下一个按钮后,该按钮以及周围位置(上边、下边、左边、右边)的灯都会改变一次。即如果灯原来是点亮的,就会被熄灭;如果灯原来是熄灭的,则会被点亮。在矩阵角上的按钮改变3 盏灯的状态;在矩阵边上的按钮改变4 盏灯的状态;其他的按钮改变5盏灯的状态。

      在下图1 中,左边矩阵中用X 标记的按钮表示被按下,右边的矩阵表示灯状态的改变。与一盏灯毗邻的多个按钮被按下时,一次操作会抵消另一次操作的结果。在图2 中,第2行第3、5列的按钮都被按下,因此第2 行、第4列的灯的状态就不改变。根据上面的规则,我们知道:

      1)第2次按下同一个按钮时,将抵消第1 次按下时所产生的结果。因此,每个按钮最多只需要按下一次。

      2)各个按钮被按下的顺序对最终的结果没有影响。

      3)对第1行中每盏点亮的灯,按下第2 行对应的按钮,就可以熄灭第1 行的全部灯。如此重复下去,可以熄灭第1、2、3、4 行的全部灯。同样,按下第1、2、3、4、5 列的按钮,可以熄灭前5列的灯。

 技术图片

图3-1 按钮的按下操作改变灯的状态

 技术图片

 

图3-2 两次按钮的按下操作的结果被抵消

       编写一个程序,输入一个5行6列的矩阵,矩阵中的元素值是每盏灯的初始状态,其值是0 或1。0表示灯的初始状态是熄灭的,1表示灯的初始状态是点亮的。确定需要按下哪些按钮,恰好使得所有的灯都熄灭。输出一个5行6列的矩阵,其中的1表示需要把对应的按钮按下,0则表示不需要按对应的按钮。

       (1)编程思路。

       定义两个数组state[6][8]和press[6][8]。其中,数组元素state[i][j]表示位置(i, j)上灯的初始状态:1表示灯是被点亮的,0表示灯是熄灭的。press[i][j]表示为了让全部的灯都熄灭,是否要按下位置(i, j)上的按钮:1表示要按下,0表示不用按下。

       问题中的矩阵一个5行6列的矩阵,由于在矩阵角上的按钮改变3 盏灯的状态,在矩阵边上的按钮改变4 盏灯的状态,矩阵中间的按钮改变5盏灯的状态。为统一处理,定义的数组表示了一个6×8 的矩阵,即在最上行加了一个虚拟行,最左和最右列两边各加一列。这样角上和边上的按钮都变成了中间按钮了,程序中无需再区分是否是边界还是内部,用统一的代码处理。

       由于第0 行、第0 列和第7 列不属于按钮矩阵的范围,没有按钮,因此设定这些位置上的灯总是熄灭的、按钮也不用按下。即数组press[6][8]中的第0行、第0列和第7列各元素值始终为0。用如下两个循环进行初始化。

    for (row = 0; row < 6; row++)

        press[row][0] = press[row][7] = 0;

    for (col = 1; col < 7; col++ )

        press[0][col] = 0;

      其它30个位置上的按钮是否需要按下是未知的。因此数组press 共有230种取值。在这么大的一个空间中进行穷举搜索,显然代价太大、不合适。可从熄灯的规则中,发现答案中的元素值之间的规律。不满足这个规律的数组press,就没有必要进行判断了。

       根据熄灯规则,如果矩阵press 是寻找的答案,那么按照press的第一行(元素press[1][1]~ press[1][6])对矩阵中的按钮操作之后,此时在矩阵的第一行上:

       1)如果位置(1,j)上的灯是点亮的(即state[1][j]=1),则要按下位置(2,j)上的按钮,即press[2][j]一定取1。

      2)如果位置(1,j)上的灯是熄灭的(即state[1][j]=0),则不能按位置(2,j)上的按钮,即press[2][j]一定取0。

       这样依据press的第一、二行操作矩阵中的按钮,才能保证第一行的灯全部熄灭。而对矩阵中第三、四、五行的按钮无论进行什么样的操作,都不影响第一行各灯的状态。依此类推,可以确定press 第三、四、五行的值。

       因此,一旦确定了press 第一行的值之后,为熄灭矩阵中第一至四行的灯,其他行的值也就随之确定了。press 的第一行共有26种取值,分别对应唯一的一种press取值,使得矩阵中前四行的灯都能熄灭。只要对这26种情况进行判断就可以了。如果按照其中的某个press对矩阵中的按钮进行操作后,第五行的所有灯也恰好熄灭,则找到了答案。

      因此,程序中需要做的是对press数组第一行的元素press[1][1]~ press [1][6]的各种取值情况进行穷举,然后根据press 第一行和state数组,按照熄灯规则计算出press其他行的值,使得矩阵第1~4 行的所有灯都熄灭。计算方法为:

     for (row = 1; row < 5; row++)

        for (col=1; col < 7; col++)

           press[row+1][col] =(state[row][col] + press[row][col] + press[row-1][col]

                            + press[row][col-1] + press[row][col+1]) % 2;

       (2)源程序及运行结果。

#include <iostream>

using namespace std;

bool guess(int state[6][8], int press[6][8])

{

     int row, col;

     for (row = 1; row < 5; row++)

        for (col=1; col < 7; col++)

           press[row+1][col] =(state[row][col] + press[row][col] + press[row-1][col]

                            + press[row][col-1] + press[row][col+1]) % 2;

     for(col=1; col<7; col++)

         if ((press[5][col-1] + press[5][col] + press[5][col+1] + press[4][col]) % 2 != state[5][col])

           return false;

     return true;

}

int main()

{

    int row, col;

    int state[6][8], press[6][8];

    for (row = 0; row < 6; row++)

        press[row][0] = press[row][7] = 0;

    for (col = 1; col < 7; col++ )

        press[0][col] = 0;

    for (row = 1; row < 6; row++)

        for (col = 1; col < 7; col++)

           cin>>state[row][col];

    for (col = 1; col < 7; col++)

         press[1][col] = 0;

    while (guess(state,press) == false )

     {

         press[1][1]++;

         col = 1;

         while (press[1][col] > 1 )

         {

             press[1][col] = 0;

             col++;

             press[1][col]++;

          }

    }

    cout<<"Output is :"<<endl;

    for ( row = 1; row < 6; row++ )

    {

       for ( col = 1; col < 7; col++ )

          cout<<press[row][col]<<" ";

       cout<<endl;

    }

    return 0;

}

穷举(三):建模分析后穷举

标签:ace   guess   状态   表示   建模   其他   spl   info   输出   

原文地址:https://www.cnblogs.com/cs-whut/p/11015421.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!