码迷,mamicode.com
首页 > 其他好文 > 详细

Deep Learning-Based Video Coding: A Review and A Case Study

时间:2019-06-13 20:03:17      阅读:136      评论:0      收藏:0      [点我收藏+]

标签:传统   intro   利用   学习   帧间预测   图像   视频编码   滤波器   cti   

1、Abstract:

  本文主要介绍的是2015年以来关于深度图像/视频编码的代表性工作,主要可以分为两类:深度编码方案以及基于传统编码方案的深度工具。对于深度编码方案,像素概率建模和自动编码是两种方法,分别可以看作是预测编码方案和变换编码方案。对于深度工具,有几种使用深度学习来执行帧内预测、帧间预测、跨通道预测、概率分布预测、变换、后处理、环内滤波器、上/下采样以及编码优化的建议技术。为了倡导基于深度学习的视频编码研究,本文对我们开发的视频编解码器即深度学习视频编码(DLVC)进行了案例研究。DLVC具有两个深度工具,分别为基于CNN的环路滤波器(CNN-ILF)以及基于CNN的块自适应分辨率编码(CNN-BARC)。这两种工具都有助于显著提高压缩效率。在随机存取和低延迟配置下,利用这两种深度工具以及其他非深度编码工具,DLVC比HEVC平均节省39.6%和33.0%的比特。

2、Introduction:

 

Deep Learning-Based Video Coding: A Review and A Case Study

标签:传统   intro   利用   学习   帧间预测   图像   视频编码   滤波器   cti   

原文地址:https://www.cnblogs.com/lucifer1997/p/11018551.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!