码迷,mamicode.com
首页 > 其他好文 > 详细

Bristol的第7篇密码学

时间:2019-06-20 15:43:49      阅读:123      评论:0      收藏:0      [点我收藏+]

标签:ica   tin   另一个   就是   概念   多项式   转换   未来   多次   

密码学52件事

Number 7 随机性如何辅助计算和什么是BPP类问题?

这篇是密码学52件事中第7篇。我们只要把问题集中在BPP复杂类问题。

目前为止,我们已经介绍了一些复杂类:

  • P 是一类能在多项式时间内被可确定的图灵机判定的问题。
  • NP是一类能在多项式时间内被非确定的图灵机判定的问题。
  • BPP是一类在多项式时间内被概率图灵机解出的问题,并且对所有的输入,输出结果有错误的概率在1/3之内。
概率图灵机

概率图灵机 [1] 是一类非确定的图灵机,这种图灵机在每个分支随机的选择,这种选择通过固定的随机分布。这种概率图灵机意味着每次输出的结果是不确定的。对于相同的输入,多次运行概率图灵机,得到的结果可能是接受的,也可能是拒绝的。这种图灵机的定义给出的几类问题的定义。RPZPP,和我们这次重要讨论的BPP

BPP类复杂问题的一些概念

我们已经看到了这个BPP(Bounded-Error probabilistic polynomial time)的定义。注意这个错误概率能是在0到1/2之间的任何值,因为一个被叫做扩增定理(amplification lemma我们不会在这里讨论更多)。BPP类问题是包含P类问题的,P类问题是BPP类问题的特例。错误概率为0.现在提出一个问题\(BPP==P\)?现在我们知道的是BPP的问题在逐渐被转换为P类问题。

一个BPP类问题的例子

最著名的BPP类问题但是不是P类问题就是确定一个数字是否是素数 [2] 。然而在2002年已经被证明存在一个P类问题的算法了。另一个还没有被转换为P类问题的是polynomial identity testing [3]。

关于复杂性类的主题,仍然有许多非常重要的未回答的问题。其中一些问题如果得到解答,将对密码学和计算机科学的未来产生重大影响。

[1] - http://en.wikipedia.org/wiki/Probabilistic_Turing_machine

[2] - http://en.wikipedia.org/wiki/AKS_primality_test

[3] - http://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

Bristol的第7篇密码学

标签:ica   tin   另一个   就是   概念   多项式   转换   未来   多次   

原文地址:https://www.cnblogs.com/zhuowangy2k/p/11058923.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!