标签:type event splay div pac color http fast const
题目描述:
题解:
单位根反演。
$[n|x]=\frac{1}{n} \sum _{i=0}^{n-1} (ω_n^x)^i$
证明?显然啊,要么停在$(1,0)$要么转一圈。
所以说题目要求的是$\sum _{i=0}^{n} C(n,i) * s^i * a_{i\;mod\;4}$
把$a$提前,变成$\sum_{k=0}^{3}a_k \sum _{i=0} ^{n} C(n,i) *s^i [4|i-k]$
然后把上面单位根反演式子套进去。后面变成$\sum _{i=0} ^n C(n,i) * s^i * \frac{1}{4} \sum _{j=0} ^{3} (ω_4 ^{i-1})^j$
把后面提前面:$\frac{1}{4} \sum_{j=0}^3 ω_4^{-j} \sum_{i=0}^{n} C(n,i)*s^i*ω_4^{ij}$
发现二项式定理:$\frac{1}{4} \sum_{j=0}^3 ω_4^{-j} * (sω_4^j+1)^n$
最后就剩快速幂了?
代码:
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; const int MOD = 998244353; template<typename T> inline void read(T&x) { T f = 1,c = 0;char ch=getchar(); while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘){c=c*10+ch-‘0‘;ch=getchar();} x = f*c; } ll fastpow(ll x,ll y) { ll ret = 1; while(y) { if(y&1)ret=ret*x%MOD; x=x*x%MOD;y>>=1; } return ret; } int T; ll n,s,a0,a1,a2,a3,w0,w1,w2,w3,W0,W1,W2,W3,ans,inv; void work() { read(n),read(s),read(a0),read(a1),read(a2),read(a3);n%=(MOD-1),ans=0; W0 = fastpow(s*w0%MOD+1,n),W1 = fastpow(s*w1%MOD+1,n); W2 = fastpow(s*w2%MOD+1,n),W3 = fastpow(s*w3%MOD+1,n); ans=(ans+a0*(w0*W0%MOD+w0*W1%MOD+w0*W2%MOD+w0*W3%MOD)%MOD)%MOD; ans=(ans+a1*(w0*W0%MOD+w3*W1%MOD+w2*W2%MOD+w1*W3%MOD)%MOD)%MOD; ans=(ans+a2*(w0*W0%MOD+w2*W1%MOD+w0*W2%MOD+w2*W3%MOD)%MOD)%MOD; ans=(ans+a3*(w0*W0%MOD+w1*W1%MOD+w2*W2%MOD+w3*W3%MOD)%MOD)%MOD; printf("%lld\n",ans*inv%MOD); } int main() { // freopen("tt.in","r",stdin); read(T);inv = fastpow(4,MOD-2); w0=1,w1=fastpow(3,(MOD-1)/4),w2=w1*w1%MOD,w3=w1*w2%MOD; while(T--)work(); return 0; }
标签:type event splay div pac color http fast const
原文地址:https://www.cnblogs.com/LiGuanlin1124/p/11060582.html