标签:style http ar 使用 sp 数据 on 问题 ad
第二个故事的主角是欧拉(Euler),拉普拉斯(Lapalace),勒让德(Legendre)和高斯(Gauss),故事发生的时间是十八世纪中到十九世纪初。十七、十八世纪是科学发展的黄金年代,微积分的发展和牛顿万有引力定律的建立,直接的推动了天文学和测地学的迅猛发展。当时的大科学家们都在考虑许多天文学上的问题。几个典型的问题如下:
这些天文学和测地学的问题,无不涉及到数据的多次测量、分析与计算;十七、十八世纪的天文观测,也积累了大量的数据需要进行分析和计算。很多年以前,学者们就已经经验性的认为,对于有误差的测量数据,多次测量取平均是比较好的处理方法。虽然缺乏理论上的论证,也不断的受到一些人的质疑,取平均作为一种异常直观的方式,已经被使用了千百年,在多年积累的数据的处理经验中也得到相当程度的验证,被认为是一种良好的数据处理方法。
以上涉及的问题,我们直接关心的目标量往往无法直接观测,但是一些相关的量是可以观测到的,而通过建立数学模型,最终可以解出我们关心的量。这些问题都可以用如下数学模型描述:我们想估计的量是β0,?,βp,另有若干个可以测量的量x1,?,xp,y,这些量之间有线性关系
y=β0+β1x1+?+βpxp
如何通过多组观测数据求解出参数β0,?,βp呢?欧拉和拉普拉斯采用的都是求解线性方程组的方法。
但是面临的一个问题是,有n组观测数据,p+1个变量,如果n>p+1,则得到的线性矛盾方程组,无法直接求解。所以欧拉和拉普拉斯采用的方法都是通过一定的对数据的观察,把n个线性方程分为p+1组,然后把每个组内的方程线性求和后归并为一个方程,从而就把n个方程的方程组化为p+1个方程的方程组,进一步解方程求解参数。这些方法初看有一些道理,但是都过于经验化,无法形成统一处理这一类问题的一个通用解决框架。
以上求解线性矛盾方程的问题在现在的本科生看来都不困难,就是统计学中的线性回归问题,直接用最小二乘法就解决了,可是即便如欧拉、拉普拉斯这些数学大牛,当时也未能对这些问题提出有效的解决方案。可见在科学研究中,要想在观念上有所突破并不容易。有效的最小二乘法是勒让德在1805年发表的,基本思想就是认为测量中有误差,所以所有方程的累积误差为
我们求解出导致累积误差最小的参数即可。
勒让德在论文中对最小二乘法的优良性做了几点说明:
对于最后一点,推理如下:假设真值为θ,x1,?,xn为n次测量值,每次测量的误差为ei=xi−θ,按最小二乘法,误差累积为
求解θ使得L(θ)达到最小,正好是算术平均
由于算术平均是一个历经考验的方法,而以上的推理说明,算术平均是最小二乘的一个特例,所以从另一个角度说明了最小二乘方法的优良性,使我们对最小二乘法更加有信心。
最小二乘法发表之后很快得到了大家的认可接受,并迅速的在数据分析实践中被广泛使用。不过历史上又有人把最小二乘法的发明归功于高斯,这又是怎么一回事呢。高斯在1809年也发表了最小二乘法,并且声称自己已经使用这个方法多年。高斯发明了小行星定位的数学方法,并在数据分析中使用最小二乘方法进行计算,准确地预测了谷神星的位置。
扯了半天最小二乘法,没看出和正态分布有任何关系啊,离题了吧?单就最小二乘法本身,虽然很实用,不过看上去更多的算是一个代数方法,虽然可以推导出最优解,对于解的误差有多大,无法给出有效的分析,而这个就是正态分布粉墨登场发挥作用的地方。勒让德提出的最小二乘法,确实是一把在数据分析领域披荆斩棘的好刀,但是刀刃还是不够锋利;而这把刀的打造后来至少一半功劳被归到高斯,是因为高斯不但独自地给出了造刀的方法,而且把最小二乘这把刀的刀刃造得无比锋利,把最小二乘打造为了一把瑞士军刀。
高斯拓展了最小二乘法,把正态分布和最小二乘法联系在一起,并使得正态分布在统计误差分析中确立了自己的定位,否则正态分布就不会被称为高斯分布了。那高斯这位神人是如何把正态分布引入到误差分析之中,打造最小二乘这把瑞士军刀的呢?
http://songshuhui.net/archives/76501
标签:style http ar 使用 sp 数据 on 问题 ad
原文地址:http://www.cnblogs.com/pengkunfan/p/4044230.html