标签:har string fir 无向图 use sqrt for utc 出现
103E
大意: 给定$n$个集合, 满足对于任意的$k$, 任意$k$个集合的并集都不少于$k$. 要求选出$k$个集合(k\ge 0), 使得并恰好等于$k$, 输出最少花费.
Hall定理: 二分图的$X$部到$Y$部有完美匹配等价于$X$中任意$k$个点与$Y$中至少$k$个点相邻.
所有集合为$X$部, 每个数为$Y$部, 集合向所含数连边, 那么一定存在完美匹配. 假设求出一组匹配, 数字$i$对应集合$C_i$, 那么最终若选取集合$A_i$, 则$A_i$中所有数字$x$对应的集合$C_x$一定也要选, 把权值取负就转化为最大权闭合子图模型. 对于最大权闭合子图问题, 源点连所有正权点, 容量为该点权值, 所有负权点连汇点, 容量为该点权值的绝对值, 其余边与原图一样, 容量为无穷, 求出源点到汇点的最小割, 那么答案为正权和-最小割, 与源点间的割的含义为不选择该点, 与汇点间的割的含义为选择该点.
#include <iostream> #include <cstdio> #include <queue> #define REP(i,a,n) for(int i=a;i<=n;++i) #define pb push_back using namespace std; const int N = 1e6+10, INF = 0x3f3f3f3f; int n, S, T, clk, f[N], vis[N]; vector<int> g[N]; int dfs(int x) { for (int y:g[x]) if (vis[y]!=clk) { vis[y] = clk; if (!f[y]||dfs(f[y])) return f[y]=x; } return 0; } struct edge { int v,w,next; } e[N]; int head[N], dep[N], cur[N], cnt=1; queue<int> Q; void add(int u, int v, int w) { e[++cnt] = {v,w,head[u]}; head[u] = cnt; e[++cnt] = {u,0,head[v]}; head[v] = cnt; } int bfs() { REP(i,1,T) dep[i]=INF,vis[i]=0,cur[i]=head[i]; dep[S]=0,Q.push(S); while (Q.size()) { int u = Q.front(); Q.pop(); for (int i=head[u]; i; i=e[i].next) { if (dep[e[i].v]>dep[u]+1&&e[i].w) { dep[e[i].v]=dep[u]+1; Q.push(e[i].v); } } } return dep[T]!=INF; } int dfs(int x, int w) { if (x==T) return w; int used = 0; for (int i=cur[x]; i; i=e[i].next) { cur[x] = i; if (dep[e[i].v]==dep[x]+1&&e[i].w) { int flow = dfs(e[i].v,min(w-used,e[i].w)); if (flow) { used += flow; e[i].w -= flow; e[i^1].w += flow; if (used==w) break; } } } return used; } int dinic() { int ans = 0; while (bfs()) ans+=dfs(S,INF); return ans; } int main() { scanf("%d", &n), S = n+1, T = S+1; REP(i,1,n) { int k, t; scanf("%d", &k); while (k--) { scanf("%d", &t); g[i].pb(t+n); g[t+n].pb(i); } } REP(i,1,n) ++clk, dfs(i); int sum = 0; REP(i,1,n) { int t; scanf("%d", &t); t = -t; if (t>=0) add(S,i,t),sum+=t; else add(i,T,-t); } REP(i,1,n) for (int j:g[i]) add(i,f[j],INF); printf("%d\n", dinic()-sum); }
164C
大意: $k$台机器, $n$个任务, 任务$i$开始时间$s_i$, 持续时间$t_i$, 获利$c_i$, 每台机器可以处理任何任务, 没处理完不能切换, 求完成哪些任务收益最大.
最大$k$重区间集问题, 时间离散化, 每个时间向下一个时间连容量$k$, 花费$0$, 任务$i$起点向终点连容量$1$, 花费$c_i$, 求出最大费用最大流即可.
#include <iostream> #include <algorithm> #include <cstdio> #include <queue> #define REP(i,a,n) for(int i=a;i<=n;++i) using namespace std; const int N = 5e4+10,S=N-2,T=N-1,INF=0x3f3f3f3f; int n,m,cost,flow,b[N]; struct edge { int to,next,w,v; edge(int to=0,int next=0,int w=0,int v=0):to(to),next(next),w(w),v(v){} } e[N]; int head[N],dep[N],vis[N],cnt=1; queue<int> Q; int spfa() { REP(i,1,*b) dep[i]=-INF,vis[i]=0; dep[T]=-INF; dep[S]=0,Q.push(S); while (Q.size()) { int u = Q.front(); Q.pop(); vis[u] = 0; for (int i=head[u]; i; i=e[i].next) { if (e[i].w&&dep[e[i].to]<dep[u]+e[i].v) { dep[e[i].to]=dep[u]+e[i].v; if (!vis[e[i].to]) { vis[e[i].to]=1; Q.push(e[i].to); } } } } return dep[T]!=-INF; } int dfs(int x, int w) { if (x==T) { cost = cost+w*dep[T]; flow += w; return w; } vis[x] = 1; int used = 0; for (int i=head[x]; i; i=e[i].next) { if (!vis[e[i].to]&&dep[e[i].to]==dep[x]+e[i].v&&e[i].w) { int f = dfs(e[i].to,min(w-used,e[i].w)); if (f) { used += f; e[i].w -= f; e[i^1].w += f; if(used==w) break; } } } return used; } void dinic(){ while(spfa()) dfs(S,INF); } void add(int x,int y,int k,int v) { e[++cnt] = edge(y,head[x],k,v); head[x] = cnt; e[++cnt] = edge(x,head[y],0,-v); head[y] = cnt; } int k,L[N],R[N],c[N],no[N]; int main() { scanf("%d%d", &n, &k); REP(i,1,n) { int s,t; scanf("%d%d%d",&s,&t,c+i); b[++*b]=L[i]=s; b[++*b]=R[i]=s+t; } sort(b+1,b+1+*b),*b=unique(b+1,b+1+*b)-b-1; REP(i,1,n) { L[i]=lower_bound(b+1,b+1+*b,L[i])-b; R[i]=lower_bound(b+1,b+1+*b,R[i])-b; } add(S,1,k,0),add(*b,T,k,0); REP(i,2,*b) add(i-1,i,k,0); REP(i,1,n) no[i]=cnt+1,add(L[i],R[i],1,c[i]); dinic(); REP(i,1,n) printf("%d ", !e[no[i]].w); puts(""); }
237E
大意: 给定字符串$t$, 给定$n$个子串, 第$i$个子串$s_i$最多可以选出$a_i$个字符, 每个字符花费为$i$, 求组成字符串$t$的最少花费.
裸的费用流, 源点向子串$i$连容量$a_i$, 费用$0$, $i$向每个字符$x$连容量$cnt_s[x]$, 费用$i$, 最后每个字符$x$向汇点连容量$cnt_t[x]$, 费用0. 求最小费用即可.
#include <iostream> #include <cstdio> #include <queue> #define REP(i,a,n) for(int i=a;i<=n;++i) using namespace std; const int N = 5e4+10,S=N-2,T=N-1,INF=0x3f3f3f3f; int n,m,cost,flow,b[N]; struct edge { int to,next,w,v; edge(int to=0,int next=0,int w=0,int v=0):to(to),next(next),w(w),v(v){} } e[N]; int head[N],dep[N],vis[N],cnt=1; queue<int> Q; int spfa() { REP(i,1,n+30) dep[i]=INF,vis[i]=0; dep[T]=INF; dep[S]=0,Q.push(S); while (Q.size()) { int u = Q.front(); Q.pop(); vis[u] = 0; for (int i=head[u]; i; i=e[i].next) { if (e[i].w&&dep[e[i].to]>dep[u]+e[i].v) { dep[e[i].to]=dep[u]+e[i].v; if (!vis[e[i].to]) { vis[e[i].to]=1; Q.push(e[i].to); } } } } return dep[T]!=INF; } int dfs(int x, int w) { if (x==T) { cost = cost+w*dep[T]; flow += w; return w; } vis[x] = 1; int used = 0; for (int i=head[x]; i; i=e[i].next) { if (!vis[e[i].to]&&dep[e[i].to]==dep[x]+e[i].v&&e[i].w) { int f = dfs(e[i].to,min(w-used,e[i].w)); if (f) { used += f; e[i].w -= f; e[i^1].w += f; if(used==w) break; } } } return used; } void dinic(){ while(spfa()) dfs(S,INF); } void add(int x,int y,int k,int v) { e[++cnt] = edge(y,head[x],k,v); head[x] = cnt; e[++cnt] = edge(x,head[y],0,-v); head[y] = cnt; } int f[N]; char s[N]; int main() { scanf("%s%d", s+1, &n); m = strlen(s+1); REP(i,1,m) ++f[s[i]]; int sum = 0; REP(i,‘a‘,‘z‘) if (f[i]) { add(n+i-‘a‘+1,T,f[i],0),sum+=f[i],f[i]=0; } REP(i,1,n) { int x; scanf("%s%d", s+1, &x); m = strlen(s+1); REP(i,1,m) ++f[s[i]]; add(S,i,x,0); REP(j,‘a‘,‘z‘) if (f[j]) add(i,n+j-‘a‘+1,f[j],i); REP(i,‘a‘,‘z‘) f[i]=0; } dinic(); if (flow!=sum) return puts("-1"),0; printf("%d\n", cost); }
269C
大意:给定无向图, 求将边定向, 使它成为一个$1$到$n$的流.
拓扑排序即可.
#include <iostream> #include <cstdio> #include <queue> #define REP(i,a,n) for(int i=a;i<=n;++i) #define pb push_back using namespace std; const int N = 1e6+10; int n,m,deg[N],ans[N],vis[N]; struct _ {int to,w,id;}; vector<_> g[N]; int main() { scanf("%d%d", &n, &m); REP(i,1,m) { int u,v,w; scanf("%d%d%d",&u,&v,&w); g[u].pb({v,w,i}); g[v].pb({u,w,-i}); deg[u]+=w,deg[v]+=w; } queue<int> q; q.push(1),vis[n]=1; memset(ans,-1,sizeof ans); while (q.size()) { int x = q.front(); q.pop(); vis[x] = 1; for (_ e:g[x]) { if (e.id<0) { if (ans[-e.id]==-1) ans[-e.id]=1; } else if (ans[e.id]==-1) ans[e.id]=0; if (!vis[e.to]) { if (!(deg[e.to]-=2*e.w)) { q.push(e.to); } } } } REP(i,1,m) printf("%d\n",ans[i]); }
277E
大意: 给定$n$个平面点, $y$值大的可以向$y$值小的连有向边, 求一棵边权和最小的有根二叉树.
每个点入度1, 出度不超过2, 建图跑费用流即可.
#include <iostream> #include <cstdio> #include <queue> #include <math.h> #define REP(i,a,n) for(int i=a;i<=n;++i) #define pb push_back using namespace std; const int N = 1e5+10, INF = 0x3f3f3f3f; int n, m, k; struct _ {int from,to,w;double f;}; vector<_> E; vector<int> g[N]; int a[N], pre[N], inq[N]; double d[N]; int mf; double mc; queue<int> q; void add(int x, int y, int c, double w) { g[x].pb(E.size()); E.pb({x,y,c,w}); g[y].pb(E.size()); E.pb({y,x,0,-w}); } void mfmc(int S, int T) { while (1) { REP(i,1,T) a[i]=INF,d[i]=1e15,inq[i]=0; q.push(S),d[S]=0; while (!q.empty()) { int x=q.front(); q.pop(); inq[x] = 0; for (auto t:g[x]) { auto e=E[t]; if (e.w>0&&d[e.to]>d[x]+e.f) { d[e.to]=d[x]+e.f; pre[e.to]=t; a[e.to]=min(a[x],e.w); if (!inq[e.to]) { inq[e.to]=1; q.push(e.to); } } } } if (a[T]==INF) break; for (int u=T;u!=S;u=E[pre[u]].from) { E[pre[u]].w-=a[T]; E[pre[u]^1].w+=a[T]; } mf+=a[T],mc+=a[T]*d[T]; } } int x[N],y[N]; int main() { scanf("%d", &n); int S=2*n+1,T=S+1; REP(i,1,n) { scanf("%d%d",x+i,y+i); add(S,i,2,0); add(i+n,T,1,0); } REP(i,1,n) REP(j,1,n) if (y[i]>y[j]) { add(i,j+n,1,sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]))); } mfmc(S,T); if (mf!=n-1) return puts("-1"),0; printf("%.10lf\n",mc); }
311E
大意: $n$个点, 颜色黑或白, 翻转第$i$个点的颜色花费$v_i$, $m$个需求, 要求一些点全白或全黑, 满足则有一定收益. 有些特殊需求若不满足则要花费$g$, 求最大收益.
最大权闭合子图问题, 最大收益转为总收益减去最小割. $S$连黑点和黑需求, 白点和白需求连$T$, 再对每个需求关系连一下边即可.
#include <iostream> #include <cstdio> #include <queue> #define REP(i,a,n) for(int i=a;i<=n;++i) using namespace std; const int N = 1e6+10, S = N-2, T = N-1, INF = 0x3f3f3f3f; int n, m, g, a[N], b[N]; struct edge { int to,w,next; edge(int to=0,int w=0,int next=0):to(to),w(w),next(next){} } e[N]; int head[N], dep[N], vis[N], cur[N], cnt=1; queue<int> Q; void add(int u, int v, int w) { e[++cnt] = edge(v,w,head[u]); head[u] = cnt; e[++cnt] = edge(u,0,head[v]); head[v] = cnt; } int bfs() { REP(i,1,n+m) dep[i]=INF,vis[i]=0,cur[i]=head[i]; dep[S]=INF,vis[S]=0,cur[S]=head[S]; dep[T]=INF,vis[T]=0,cur[T]=head[T]; dep[S]=0,Q.push(S); while (Q.size()) { int u = Q.front(); Q.pop(); for (int i=head[u]; i; i=e[i].next) { if (dep[e[i].to]>dep[u]+1&&e[i].w) { dep[e[i].to]=dep[u]+1; Q.push(e[i].to); } } } return dep[T]!=INF; } int dfs(int x, int w) { if (x==T) return w; int used = 0; for (int i=cur[x]; i; i=e[i].next) { cur[x] = i; if (dep[e[i].to]==dep[x]+1&&e[i].w) { int f = dfs(e[i].to,min(w-used,e[i].w)); if (f) used+=f,e[i].w-=f,e[i^1].w+=f; if (used==w) break; } } return used; } int dinic() { int ans = 0; while (bfs()) ans+=dfs(S,INF); return ans; } int main() { scanf("%d%d%d", &n, &m, &g); REP(i,1,n) scanf("%d",a+i); REP(i,1,n) scanf("%d",b+i); REP(i,1,n) { if (a[i]) add(S,i,b[i]); else add(i,T,b[i]); } int sum = 0; REP(i,1,m) { int c,w,k,t,f; scanf("%d%d%d",&c,&w,&k); sum += w; while (k--) { scanf("%d", &t); if (c) add(i+n,t,INF); else add(t,i+n,INF); } scanf("%d", &f); if (f) f = g; if (c) add(S,i+n,f+w); else add(i+n,T,f+w); } printf("%d\n",sum-dinic()); }
316C
大意: 给定$n*m$矩阵, $n*m$为偶数, $[1,\frac{nm}{2}]$每个数均出现$2$次, 求最少交换数使得相同数字相邻.
二分图最佳完美匹配, 每个点向相邻格子连边, 同色连费用0, 异色连费用1, 求出费用最小的完美匹配即为答案
#include <iostream> #include <queue> #define REP(i,a,b) for(int i=a;i<=b;++i) using namespace std; const int N = 1e6+10, S = N-2, T = N-1, INF = 0x3f3f3f3f; int n, m, flow, cost; struct edge { int to,w,v,next; edge(int to=0,int w=0,int v=0,int next=0):to(to),v(v),w(w),next(next){} } e[N]; int head[N], dep[N], vis[N], cur[N], f[N], cnt=1; pair<int,int> pre[N]; queue<int> Q; void add(int u, int v, int w, int k) { e[++cnt] = edge(v,w,k,head[u]); head[u] = cnt; e[++cnt] = edge(u,0,-k,head[v]); head[v] = cnt; } int spfa() { REP(i,1,n*m) f[i]=dep[i]=INF,vis[i]=0; f[S]=dep[S]=f[T]=dep[T]=INF; dep[S]=0,Q.push(S); while (Q.size()) { int u = Q.front(); Q.pop(); vis[u] = 0; for (int i=head[u]; i; i=e[i].next) { if (dep[e[i].to]>dep[u]+e[i].v&&e[i].w) { dep[e[i].to]=dep[u]+e[i].v; pre[e[i].to]=pair<int,int>(u,i); f[e[i].to]=min(f[u],e[i].w); if (!vis[e[i].to]) { vis[e[i].to]=1; Q.push(e[i].to); } } } } return dep[T]!=INF; } int dfs(int x, int w) { if (x==T) return w; int used = 0; for (int i=cur[x]; i; i=e[i].next) { cur[x] = i; if (dep[e[i].to]==dep[x]+1&&e[i].w) { int f = dfs(e[i].to,min(w-used,e[i].w)); if (f) used+=f,e[i].w-=f,e[i^1].w+=f; if (used==w) break; } } return used; } void EK(){ while(spfa()) { int w = f[T]; for (int u=T; u!=S; u=pre[u].first) { e[pre[u].second].w-=w; e[pre[u].second^1].w+=w; } flow += w, cost += w*dep[T]; } } int a[99][99]; const int dx[]={0,0,-1,1}; const int dy[]={-1,1,0,0}; int ID(int x, int y) { return (x-1)*m+y; } int main() { scanf("%d%d", &n, &m); REP(i,1,n) REP(j,1,m) scanf("%d",a[i]+j); REP(i,1,n) REP(j,1,m) { if (i!=n) { int x=ID(i,j),y=ID(i+1,j); if (i+j&1) swap(x,y); add(x,y,1,a[i][j]!=a[i+1][j]); } if (j!=m) { int x=ID(i,j),y=ID(i,j+1); if (i+j&1) swap(x,y); add(x,y,1,a[i][j]!=a[i][j+1]); } if (i+j&1) add(ID(i,j),T,1,0); else add(S,ID(i,j),1,0); } EK(); printf("%d\n",cost); }
321B
大意: 对手$n$只怪, 你有$m$只怪, 现在是你的回合. 对面怪全有嘲讽, 分为攻击怪和防御怪. 若你攻击对面攻击怪, 要满足你怪的能力不少于对面, 攻击后对面怪死亡, 对英雄伤害为能力差. 若你攻击对面防御怪, 要满足你怪的能力大于对面, 攻击后对面怪死亡, 对英雄伤害$0$. 若对面没怪可以直接攻击对面英雄, 伤害为你的怪的能力值. 求英雄造成的最大伤害.
不攻击英雄的情况贪心判掉. 攻击英雄的情况, 显然是一个最大带权匹配问题, 用费用流或者$KM$即可.
#include <iostream> #include <cstdio> #include <queue> #define REP(i,a,n) for(int i=a;i<=n;++i) using namespace std; const int N = 1e6+10, INF = 0x3f3f3f3f, S = N-2, T = N-1; int n, m, flow, cost; struct edge { int to,w,v,next; edge(int to=0,int w=0,int v=0,int next=0):to(to),w(w),v(v),next(next){} } e[N]; int head[N], dep[N], vis[N], cur[N], f[N], cnt=1; int pre[N],pre2[N]; queue<int> Q; void add(int u, int v, int w, int k) { e[++cnt] = edge(v,w,k,head[u]); head[u] = cnt; e[++cnt] = edge(u,0,-k,head[v]); head[v] = cnt; } int spfa() { REP(i,1,n+m) f[i]=dep[i]=INF,vis[i]=0; f[S]=dep[S]=f[T]=dep[T]=INF; dep[S]=0,Q.push(S); while (Q.size()) { int u = Q.front(); Q.pop(); vis[u] = 0; for (int i=head[u]; i; i=e[i].next) { if (dep[e[i].to]>dep[u]+e[i].v&&e[i].w) { dep[e[i].to]=dep[u]+e[i].v; pre[e[i].to]=u,pre2[e[i].to]=i; f[e[i].to]=min(f[u],e[i].w); if (!vis[e[i].to]) { vis[e[i].to]=1; Q.push(e[i].to); } } } } return dep[T]!=INF; } void EK(){ while(spfa()) { int w = f[T]; for (int u=T; u!=S; u=pre[u]) { e[pre2[u]].w-=w; e[pre2[u]^1].w+=w; } flow += w, cost += w*dep[T]; } } int a[N], b[N], c[N]; char s[110][10]; int main() { scanf("%d%d", &n, &m); REP(i,1,n) scanf("%s%d",s[i],a+i); int sum = 0; REP(i,1,m) scanf("%d",b+i),sum+=b[i]; REP(i,1,m) add(S,i,1,0); REP(i,1,n) add(i+m,T,1,0); REP(i,1,m) REP(j,1,n) { if (s[j][0]==‘A‘) { if (b[i]>=a[j]) add(i,j+m,1,a[j]); else add(i,j+m,1,1e6); } else { if (b[i]>a[j]) add(i,j+m,1,b[i]); else add(i,j+m,1,1e6); } } EK(); int ans = sum-cost; REP(i,1,n) if (s[i][0]==‘A‘) c[++*c]=a[i]; sort(b+1,b+1+m,greater<int>()); sort(c+1,c+1+*c); int ret = 0; REP(i,1,min(m,*c)) ret += max(0,b[i]-c[i]); printf("%d\n",max(ans,ret)); }
343E
最小割树
362E
大意: 给定$n$个点的网络图, 每次操作选一条边流量$+1$, 最多$k$次, 求最大流.
先求一次最大流, 然后对残量网络上每条边加一条容量$k$, 费用为$1$的边, 再跑一次费用流, 当费用达到$k$时停止.
#include <iostream> #include <cstdio> #include <queue> #define REP(i,a,n) for(int i=a;i<=n;++i) using namespace std; typedef pair<int,int> pii; const int N = 5e4+10,INF=0x3f3f3f3f; int n,m,cost,flow,S,T; struct edge { int to,next,w,v; edge(int to=0,int next=0,int w=0,int v=0):to(to),next(next),w(w),v(v){} } e[N]; int head[N],dep[N],vis[N],f[N],cnt=1; pii pre[N]; queue<int> Q; int spfa() { REP(i,1,n) f[i]=dep[i]=INF,vis[i]=0; dep[S]=0,Q.push(S); while (Q.size()) { int u = Q.front(); Q.pop(); vis[u] = 0; for (int i=head[u]; i; i=e[i].next) { if (e[i].w&&dep[e[i].to]>dep[u]+e[i].v) { dep[e[i].to]=dep[u]+e[i].v; pre[e[i].to]=pii(u,i); f[e[i].to]=min(f[u],e[i].w); if (!vis[e[i].to]) { vis[e[i].to]=1; Q.push(e[i].to); } } } } return cost+dep[T]<=m; } void EK(){ while(spfa()) { int w = f[T]; if (cost+(long long)w*dep[T]>m) w = (m-cost)/dep[T]; for (int u=T; u!=S; u=pre[u].first) { e[pre[u].second].w-=w; e[pre[u].second^1].w+=w; } flow += w, cost += w*dep[T]; } } void add(int x,int y,int k,int v) { e[++cnt] = edge(y,head[x],k,v); head[x] = cnt; e[++cnt] = edge(x,head[y],0,-v); head[y] = cnt; } int a[66][66]; int main() { scanf("%d%d", &n, &m); S=1,T=n; REP(i,1,n) REP(j,1,n) { scanf("%d", a[i]+j); if (a[i][j]) add(i,j,a[i][j],0); } EK(); REP(i,1,n) REP(j,1,n) { if (a[i][j]) add(i,j,m,1); } EK(); printf("%d\n", flow); }
434D
https://www.cnblogs.com/Skyminer/p/6337959.html
491C
大意:给定两个长为$n$的串, 求改变第一个字符串的字母映射关系, 使得两个串对应位置相等的个数最大.
裸的最大带权匹配.
#include <iostream> #include <cstdio> #include <queue> #include <map> #define REP(i,a,n) for(int i=a;i<=n;++i) using namespace std; const int N = 2e6+10, INF = 0x3f3f3f3f, S = N-2, T = N-1; int flow, cost, k, n; struct edge { int to,w,v,next; edge(int to=0,int w=0,int v=0,int next=0):to(to),w(w),v(v),next(next){} } e[N]; int head[N], dep[N], vis[N], cur[N], f[N], cnt=1; int pre[N],pre2[N]; queue<int> Q; int spfa() { REP(i,1,2*k) f[i]=dep[i]=INF,vis[i]=0; f[S]=dep[S]=f[T]=dep[T]=INF; dep[S]=0,Q.push(S); while (Q.size()) { int u = Q.front(); Q.pop(); vis[u] = 0; for (int i=head[u]; i; i=e[i].next) { if (dep[e[i].to]>dep[u]+e[i].v&&e[i].w) { dep[e[i].to]=dep[u]+e[i].v; pre[e[i].to]=u,pre2[e[i].to]=i; f[e[i].to]=min(f[u],e[i].w); if (!vis[e[i].to]) { vis[e[i].to]=1; Q.push(e[i].to); } } } } return dep[T]!=INF; } void EK(){ while(spfa()) { int w = f[T]; for (int u=T; u!=S; u=pre[u]) { e[pre2[u]].w-=w; e[pre2[u]^1].w+=w; } flow += w, cost += w*dep[T]; } } void add(int u, int v, int w, int k) { e[++cnt] = edge(v,w,k,head[u]); head[u] = cnt; e[++cnt] = edge(u,0,-k,head[v]); head[v] = cnt; } int a[111][111],b[111][111],ans[N],ID[N]; char s[N],ss[N],t[N],val[N]; int main() { scanf("%d%d", &n, &k); REP(i,1,min(26,k)) ID[val[i]=i-1+‘a‘]=i; REP(i,27,k) ID[val[i]=i-27+‘A‘]=i; scanf("%s%s",s+1,ss+1); REP(i,1,n) ++a[ID[s[i]]][ID[ss[i]]]; REP(i,1,k) add(S,i,1,0),add(i+k,T,1,0); REP(i,1,k) REP(j,1,k) b[i][j]=cnt+1,add(i,j+k,1,-a[i][j]); EK(); printf("%d\n", -cost); REP(i,1,k) REP(j,1,k) if (!e[b[i][j]].w) ans[i]=val[j]; REP(i,1,k) putchar(ans[i]);puts(""); }
498C
大意: 给定序列$a$, $m$个二元组$(x,y)$, 保证$x+y$为奇数, 每次操作任选一个二元组$(x,y)$, 选择一个$k>1$, 且$k$能整除$a_x$和$a_y$, 然后将$a_x,a_y$除以$k$, 求最多进行多少次操作.
裸的最大流.
#include <iostream> #include <cstdio> #include <cmath> #include <map> #include <queue> #define REP(i,a,n) for(int i=a;i<=n;++i) #define x first #define y second using namespace std; typedef pair<int,int> pii; inline int rd() {int x=0;char p=getchar();while(p<‘0‘||p>‘9‘)p=getchar();while(p>=‘0‘&&p<=‘9‘)x=x*10+p-‘0‘,p=getchar();return x;} const int N = 1e6+10, S = N-2, T = N-1, INF = 0x3f3f3f3f; int n,m,tot; struct edge { int to,w,next; edge(int to=0,int w=0,int next=0):to(to),w(w),next(next){} } e[N]; int head[N], dep[N], vis[N], cur[N], cnt=1; queue<int> Q; int bfs() { REP(i,1,tot) dep[i]=INF,vis[i]=0,cur[i]=head[i]; dep[S]=INF,vis[S]=0,cur[S]=head[S]; dep[T]=INF,vis[T]=0,cur[T]=head[T]; dep[S]=0,Q.push(S); while (Q.size()) { int u = Q.front(); Q.pop(); for (int i=head[u]; i; i=e[i].next) { if (dep[e[i].to]>dep[u]+1&&e[i].w) { dep[e[i].to]=dep[u]+1; Q.push(e[i].to); } } } return dep[T]!=INF; } int dfs(int x, int w) { if (x==T) return w; int used = 0; for (int i=cur[x]; i; i=e[i].next) { cur[x] = i; if (dep[e[i].to]==dep[x]+1&&e[i].w) { int f = dfs(e[i].to,min(w-used,e[i].w)); if (f) used+=f,e[i].w-=f,e[i^1].w+=f; if (used==w) break; } } return used; } int dinic() { int ans = 0; while (bfs()) ans+=dfs(S,INF); return ans; } void add(int u, int v, int w) { e[++cnt] = edge(v,w,head[u]); head[u] = cnt; e[++cnt] = edge(u,0,head[v]); head[v] = cnt; } map<int,int> f[N]; map<pii,int> mp; int ID(int x, int y) { if (mp.count(pii(x,y))) return mp[pii(x,y)]; return mp[pii(x,y)] = ++tot; } map<int,int> fac(int x) { int mx = sqrt(x+0.5); map<int,int> v; REP(i,2,mx) { while (x%i==0) x/=i,++v[i]; } if (x>1) ++v[x]; return v; } int main() { scanf("%d%d", &n, &m); REP(i,1,n) { f[i]=fac(rd()); if (i&1) for (auto t:f[i]) add(ID(i,t.x),T,t.y); else for (auto t:f[i]) add(S,ID(i,t.x),t.y); } REP(i,1,m) { int u=rd(),v=rd(); if (u&1) swap(u,v); for (auto t:f[u]) { if (f[v].count(t.x)) add(ID(u,t.x),ID(v,t.x),INF); } } printf("%d\n", dinic()); }
510E
大意: n只狐狸, 要求分成若干个环, 每个环的狐狸不少于三只, 相邻狐狸年龄和为素数.
年龄大于$1$, 那么两个数和为素数必然是一奇一偶, 奇偶分开建图跑最大流即可.
#include <iostream> #include <cstdio> #include <cmath> #include <map> #include <queue> #define REP(i,a,n) for(int i=a;i<=n;++i) #define pb push_back #define x first #define y second using namespace std; typedef pair<int,int> pii; inline int rd() {int x=0;char p=getchar();while(p<‘0‘||p>‘9‘)p=getchar();while(p>=‘0‘&&p<=‘9‘)x=x*10+p-‘0‘,p=getchar();return x;} const int N = 1e6+10, S = N-2, T = N-1, INF = 0x3f3f3f3f; int n; struct edge { int to,w,next; edge(int to=0,int w=0,int next=0):to(to),w(w),next(next){} } e[N]; int head[N], dep[N], vis[N], cur[N], cnt=1; queue<int> Q; int bfs() { REP(i,1,n) dep[i]=INF,vis[i]=0,cur[i]=head[i]; dep[S]=INF,vis[S]=0,cur[S]=head[S]; dep[T]=INF,vis[T]=0,cur[T]=head[T]; dep[S]=0,Q.push(S); while (Q.size()) { int u = Q.front(); Q.pop(); for (int i=head[u]; i; i=e[i].next) { if (dep[e[i].to]>dep[u]+1&&e[i].w) { dep[e[i].to]=dep[u]+1; Q.push(e[i].to); } } } return dep[T]!=INF; } int dfs(int x, int w) { if (x==T) return w; int used = 0; for (int i=cur[x]; i; i=e[i].next) { cur[x] = i; if (dep[e[i].to]==dep[x]+1&&e[i].w) { int f = dfs(e[i].to,min(w-used,e[i].w)); if (f) used+=f,e[i].w-=f,e[i^1].w+=f; if (used==w) break; } } return used; } int dinic() { int ans = 0; while (bfs()) ans+=dfs(S,INF); return ans; } void add(int u, int v, int w) { e[++cnt] = edge(v,w,head[u]); head[u] = cnt; e[++cnt] = edge(u,0,head[v]); head[v] = cnt; } int f[N],a[N]; vector<int> g[N],ans[N]; void seive(int n) { int mx = sqrt(n+0.5); REP(i,2,mx) if (!f[i]) { for (int j=i*i; j<=n; j+=i) f[j] = 1; } } int main() { seive(20100); scanf("%d", &n); REP(i,1,n) { if ((a[i]=rd())&1) add(S,i,2); else add(i,T,2); } REP(i,1,n) if (a[i]&1) REP(j,1,n) if (a[j]&1^1) { if (!f[a[i]+a[j]]) add(i,j,1); } if (dinic()!=n) return puts("Impossible"),0; REP(i,1,n) if (a[i]&1) { for (int t=head[i]; t; t=e[t].next) { if (!e[t].w&&e[t].to<=n) { g[i].pb(e[t].to); g[e[t].to].pb(i); } } } REP(i,1,n) vis[i] = 0; int cnt = 0; REP(i,1,n) if (!vis[i]) { ++cnt; int j = i; while (1) { vis[j] = 1; ans[cnt].pb(j); if (vis[g[j][0]]&&vis[g[j][1]]) break; if (vis[g[j][0]]) j=g[j][1]; else j=g[j][0]; } } printf("%d\n", cnt); REP(i,1,cnt) { printf("%d ", (int)ans[i].size()); for (int j:ans[i]) printf("%d ",j); puts(""); } }
513F
大意: $n*m$的矩阵, 每个格子能住两个人, 给定若干个人的位置以及移动速度, 求最短多少时间, 能使所有人都和一个异性分到一个房间.
二分答案, 建图, 看最大流是否满流.
#include <iostream> #include <cstdio> #include <queue> #include <string.h> #define REP(i,a,n) for(int i=a;i<=n;++i) using namespace std; typedef long long ll; const int N = 1e6+10, S = N-2, T = N-1, INF = 0x3f3f3f3f; struct edge { int to,w,next; edge(int to=0,int w=0,int next=0):to(to),w(w),next(next){} } e[N]; int head[N], dep[N], vis[N], cur[N], cnt=1; queue<int> Q; int bfs(int n) { REP(i,1,n) dep[i]=INF,vis[i]=0,cur[i]=head[i]; dep[S]=INF,vis[S]=0,cur[S]=head[S]; dep[T]=INF,vis[T]=0,cur[T]=head[T]; dep[S]=0,Q.push(S); while (Q.size()) { int u = Q.front(); Q.pop(); for (int i=head[u]; i; i=e[i].next) { if (dep[e[i].to]>dep[u]+1&&e[i].w) { dep[e[i].to]=dep[u]+1; Q.push(e[i].to); } } } return dep[T]!=INF; } int dfs(int x, int w) { if (x==T) return w; int used = 0; for (int i=cur[x]; i; i=e[i].next) { cur[x] = i; if (dep[e[i].to]==dep[x]+1&&e[i].w) { int f = dfs(e[i].to,min(w-used,e[i].w)); if (f) used+=f,e[i].w-=f,e[i^1].w+=f; if (used==w) break; } } return used; } int dinic(int n) { int ans = 0; while (bfs(n)) ans+=dfs(S,INF); return ans; } void add(int u, int v, int w) { e[++cnt] = edge(v,w,head[u]); head[u] = cnt; e[++cnt] = edge(u,0,head[v]); head[v] = cnt; } int n,m,x,y; struct _ {int x,y,t;} h, a[N], b[N]; char s[33][33]; int v[33][33]; int ID(int x, int y) { return (x-1)*m+y; } const int dx[]={0,0,-1,1}; const int dy[]={-1,1,0,0}; int chk(ll tot) { cnt = 1; REP(i,1,2*x+2*n*m) head[i]=0; head[S]=head[T]=0; queue<_> q; REP(i,1,x) { add(S,i,1); q.push({a[i].x,a[i].y,0}); memset(v,0,sizeof v); while (q.size()) { _ u = q.front(); q.pop(); if (s[u.x][u.y]==‘#‘||v[u.x][u.y]) continue; if (a[i].t&&u.t>tot/a[i].t) continue; v[u.x][u.y] = 1; REP(k,0,3) { int xx=u.x+dx[k],yy=u.y+dy[k]; if (1<=xx&&xx<=n&&1<=yy&&yy<=m) { q.push({xx,yy,u.t+1}); } } } REP(j,1,n) REP(k,1,m) if (v[j][k]) add(i,ID(j,k)+2*x,1); } REP(i,1,x) { add(i+x,T,1); q.push({b[i].x,b[i].y,0}); memset(v,0,sizeof v); while (q.size()) { _ u = q.front(); q.pop(); if (s[u.x][u.y]==‘#‘||v[u.x][u.y]) continue; if (b[i].t&&u.t>tot/b[i].t) continue; v[u.x][u.y] = 1; REP(k,0,3) { int xx=u.x+dx[k],yy=u.y+dy[k]; if (1<=xx&&xx<=n&&1<=yy&&yy<=m) { q.push({xx,yy,u.t+1}); } } } REP(j,1,n) REP(k,1,m) if (v[j][k]) add(ID(j,k)+2*x+n*m,i+x,1); } REP(i,1,n) REP(j,1,m) if (s[i][j]!=‘#‘) add(ID(i,j)+2*x,ID(i,j)+2*x+n*m,1); return dinic(2*x+2*n*m)==x; } int main() { scanf("%d%d%d%d", &n, &m, &x, &y); if (abs(x-y)!=1) return puts("-1"),0; REP(i,1,n) scanf("%s",s[i]+1); scanf("%d%d%d",&h.x,&h.y,&h.t); REP(i,1,x) scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].t); REP(i,1,y) scanf("%d%d%d",&b[i].x,&b[i].y,&b[i].t); if (x>y) b[++y]=h; else a[++x]=h; ll l=0,r=1e18,ans=-1; while (l<=r) { ll mid = (l+r)/2; if (chk(mid)) ans=mid,r=mid-1; else l=mid+1; } printf("%lld\n", ans); }
546E
611H
标签:har string fir 无向图 use sqrt for utc 出现
原文地址:https://www.cnblogs.com/uid001/p/11066884.html