问题:
任何数都能分解成2的幂,比如
7=1+1+1+1+1+1+1
=1+1+1+1+1+2
=1+1+1+2+2
=1+2+2+2
=1+1+1+4
=1+2+4
共有6种分解方式,设f(n)为任意正整数可能分解总数,比如f(7)=6
写个算法,输入数,求出其分解的总数。
思路:
先按照树形结构,把一个数可能的2的幂的子数记录下来,比如7拆分成7个1,3个2,1个4。从高到底遍历所有可能的搭配。
import math import copy def get_distribute_for_number(number): distribute = {} distribute[0] = number for i in range(0, int(math.log(number, 2) + 1)): if i not in distribute: break count_i = distribute[i] while count_i >= 2: count_i -= 2 if i + 1 not in distribute: distribute[i + 1] = 0 distribute[i + 1] += 1 return distribute def count_by_distribute(distribute, number, parent_expr): if number == 0: print("expr : %s"%parent_expr[:-3]) return 1 max_leaf = len(distribute) - 1 if max_leaf == 0: print("expr : %s"%(parent_expr + " 1 * %d"%number)) return 1 curr_distribute = copy.copy(distribute) max_leaf_value = 2 ** max_leaf max_leaf_num = curr_distribute.pop(max_leaf) count = 0 for i in range(0, max_leaf_num + 1): left = number - max_leaf_value * i expr = parent_expr expr += "%d * %d"%(max_leaf_value, i) expr += " + " if left < 0: break count_left = count_by_distribute(curr_distribute, left, expr) count += count_left #print("current distribute is ") #print(curr_distribute) #print("kept %d leaves of %d"%(i, max_leaf_value)) #print("distributing num for %d is %d"%(left, count_left)) return count number = input("Input Number:") distribute = get_distribute_for_number(number) print("Distribute for num is") print(distribute) count = count_by_distribute(distribute, number, "") print("Number %d can be distributed by %d ways"%(number, count))
原文地址:http://blog.csdn.net/oswin/article/details/40383881