标签:put create apach executors 检查 lis available upload mem
./bin/spark-shell --master yarn
2019-07-01 12:20:13 WARN NativeCodeLoader:62 - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 2019-07-01 12:20:29 WARN Client:66 - Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME. 2019-07-01 12:20:55 z org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master. at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:89) at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:63) at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:164) at org.apache.spark.SparkContext.<init>(SparkContext.scala:500) at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2493) at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:934) at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:925) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:925) at org.apache.spark.repl.Main$.createSparkSession(Main.scala:103) at $line3.$read$$iw$$iw.<init>(<console>:15) at $line3.$read$$iw.<init>(<console>:43) at $line3.$read.<init>(<console>:45) at $line3.$read$.<init>(<console>:49) at $line3.$read$.<clinit>(<console>) at $line3.$eval$.$print$lzycompute(<console>:7) at $line3.$eval$.$print(<console>:6) at $line3.$eval.$print(<console>) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786) at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047) at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638) at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637) at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31) at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19) at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637) at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569) at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565) at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807) at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681) at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1$$anonfun$apply$mcV$sp$2.apply(SparkILoop.scala:79) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1$$anonfun$apply$mcV$sp$2.apply(SparkILoop.scala:79) at scala.collection.immutable.List.foreach(List.scala:381) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(SparkILoop.scala:79) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply(SparkILoop.scala:79) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply(SparkILoop.scala:79) at scala.tools.nsc.interpreter.ILoop.savingReplayStack(ILoop.scala:91) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:78) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:78) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:78) at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214) at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:77) at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:110) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909) at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97) at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909) at org.apache.spark.repl.Main$.doMain(Main.scala:76) at org.apache.spark.repl.Main$.main(Main.scala:56) at org.apache.spark.repl.Main.main(Main.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:894) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:198) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:228) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:137) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) 2019-07-01 12:20:55 WARN YarnSchedulerBackend$YarnSchedulerEndpoint:66 - Attempted to request executors before the AM has registered! 2019-07-01 12:20:55 WARN MetricsSystem:66 - Stopping a MetricsSystem that is not running org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master. at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:89) at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:63) at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:164) at org.apache.spark.SparkContext.<init>(SparkContext.scala:500) at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2493) at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:934) at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:925) at scala.Option.getOrElse(Option.scala:121)
主要原因在与spark2+的版本对jdk进行了检查导致的,换了低版本的jdk之后,发现版本不支持,spark2.+需要使用jdk1.8+以上的版本,把jdk版本切换过来。在yarn的配置文件添加一下配置即可。
vi yarn-site.xml # 添加以下配置
<property> <name>yarn.nodemanager.pmem-check-enabled</name> <value>false</value> </property> <property> <name>yarn.nodemanager.vmem-check-enabled</name> <value>false</value> </property>
最后,最后,最后,不要忘记重启hadoop,不然在去执行还是会报错的。
2019-07-01 12:31:36 WARN NativeCodeLoader:62 - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 2019-07-01 12:32:02 WARN Client:66 - Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME. Spark context Web UI available at http://master:4040 Spark context available as ‘sc‘ (master = yarn, app id = application_1561955386005_0001). Spark session available as ‘spark‘. Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ ‘_/ /___/ .__/\_,_/_/ /_/\_\ version 2.3.3 /_/ Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_211) Type in expressions to have them evaluated. Type :help for more information.
标签:put create apach executors 检查 lis available upload mem
原文地址:https://www.cnblogs.com/hanwen1014/p/11113385.html