码迷,mamicode.com
首页 > 其他好文 > 详细

MA Notes

时间:2019-07-03 20:02:53      阅读:105      评论:0      收藏:0      [点我收藏+]

标签:$$   note   its   cti   app   lin   log   erp   book   

Book: A. Figalli   《The Monge Ampere Equation and Its Application》

 

1.Let $A,B\in R^{n\times n}$, and assume that $A$ is invertible. Then,

$$\frac{d}{dt}|_{t=0}det(A+tB)=det(A)tr(A^{-1}B)=tr(cof(A)^{T}B).$$

In addition, the latter formula holds also when $A$ is not invertible.

 

2.Let $A,B\in R^{n\times n}$, and assume that $A$ is invertible. Then,

$$\frac{d}{dt}|_{t=0}det(A+tB)^{-1}=det(A)tr(A^{-1}B)=-A^{-1}BA^{-1}.$$

 

3.Let $A,B\in R^{n\times n}$ be symmetric nonnegative definite matrices. Then,

$$det(A+B)\geq det(A)+det(B),$$

$$det(A+B)^{\frac{1}{n}}\geq det(A)^{\frac{1}{n}}+det(B)^{\frac{1}{n}}.$$

Furthermore, if $A,B\in R^{n\times n}$ are symmetric positive definite matrices, then

$$\log det(\lambda A+(1-\lambda)B)\geq \lambda\log det(A) +(1-\lambda)\log det(B).$$

 

4. Given $A\in R^{n\times n}$, we denote its operator norm by $||A||$, i.e.,  $||A||:=\sup_{|v|=1}|Av|$.

Assume that there exists a constant $K>1$ such that  $\frac{1}{K}Id\leq A^TA\leq AId$.

Then $||A||, ||A^-1||\leq \sqrt{K}$.

 

5. Area formula for the gradient of convex functions.

Let $\Omega$ be an open bounded set in $R^{n}$, and let $u:\Omega\rightarrow R$ be a convex function of class $C^{1,1}_{loc}$. Then,

$|\partial u(E)|=\int_E det(D^2u)dx , \forall E\subset \Omega Borel. $

 

6. Let $u: R^n\rightarrow R$ be a convex function, and assume that $u$ is affine on a line $\hat{l}$. Then  $\partial u(R^n)$ is containted inside a hyperplane orthogonal $\hat{l}$. In particular,  $|\partial u(R^n)|=0.$

 

MA Notes

标签:$$   note   its   cti   app   lin   log   erp   book   

原文地址:https://www.cnblogs.com/Analysis-PDE/p/11128336.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!