码迷,mamicode.com
首页 > 其他好文 > 详细

求组合数C(m,n)的多种计算方法

时间:2019-07-04 15:59:59      阅读:156      评论:0      收藏:0      [点我收藏+]

标签:cin   details   article   ext   name   www   ace   html   page   

https://ac.nowcoder.com/discuss/187813?type=101&order=0&pos=1&page=0

https://blog.csdn.net/shadandeajian/article/details/82084087

1.简单法---适合n,m很小

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1000;
int C[MAXN+1][MAXN+1];
//求排列组合数C(m,n)  上面为m,下面为n  m<n
//C(m,n)=n!/m!/(n-m)!=n*(n-1)*..*(n-m+1)/m!.
int baoli_C(int m,int n)  //暴力法这里n<=15
{
    int summ=1,sumn=1;
    //其实算C(m,n)只要计算min(m,n-m)次就可以了
    if(m>n-m)
        m=n-m;
    for(int i=1;i<=m;i++){
        summ*=i;
        sumn=sumn*(n-i+1);
    }
    return sumn/summ;
}

void dabiao_C(){    //打表,数据为int,注意溢出数据   n<60
    //C(n, m)  = C(n -1, m - 1) + C(n - 1, m)
     for(int i=0;i<MAXN;i++)
    {
//         C[i][0]=1; C[0][i]=0;//该写法顺序是错误的,因为这样写C[0][0]=0;
         C[0][i]=0;C[i][0]=1;
    }
     for(int i=1;i<MAXN;i++)
        for(int j=1;j<MAXN;j++)
        C[i][j]=C[i-1][j-1]+C[i-1][j];
}

int main(){
    dabiao_C();
    int m,n;
    while(cin>>m>>n){  //m<n
        cout<<C[m][n]<<endl;
    }
}

 

2.Lucas定理求组合数

组合数C(n, m) % p

= (n!/m!/(n-m)!)%mod     组合数公式

= n!*inv(m!*(n-m)!)%mod    转化式子

= n!*(m!*((n-m)!)^(mod-2))%mod     由于p是素数,有费马小定理可知,m! * (n - m)! 关于p的逆元就是m! * (n - m)!的p-2次方。

=(n*(n-1)*..*(n-m+1) / m!) %mod.==( (n*(n-1)*..*(n-m+1))  * (m^(mod-2)) ) %mod.

第一种情况:p是素数,且p较小,采用打表---打表记录 阶乘%mod的值  ---  n!*(m!*((n-m)!)^(mod-2))%mod

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int MAXN = 1000;
#define mod 998244353
const int maxn = 1e5+10;
ll fac[maxn];//maxn应该小于1e5,这样Lucas定理才适用
void Init(){  //对阶乘打表
    fac[0]=1;
    for(int i=1;i<=maxn-5;i++){
        fac[i]=fac[i-1]*i%mod;
    }
}

ll quickpow(ll a,ll b){
     ll t=a,ans=1;
     while(b!=0){
        if(b&1==1)
            ans=(ans*t)%mod;
        t=t*t%mod;
        b>>=1;
     }
     return ans%mod;
}

ll C(ll n,ll m){
    if(m>n)
        return 0;
     return fac[n]*quickpow(fac[m]*fac[n-m],mod-2)%mod;
}

ll Lucas(ll n,ll m){
    if(m==0)
        return 1;
    return Lucas(n/mod,m/mod)*C(n%mod,m%mod)%mod;
}
int main(){
    ll n,m;
    Init();
    while(cin>>n>>m){
        cout<<C(n,m)<<endl;
    }
}

 

第二种情况:p是素数,且p比较大,不好打表   ---(n*(n-1)*..*(n-m+1) / m!) %mod.

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int MAXN = 1000;
#define mod 998244353
ll pow(ll a, ll b, ll m)
{
    ll ans = 1;
    a %= m;
    while(b)
    {
        if(b & 1)ans = (ans % m) * (a % m) % m;
        b /= 2;
        a = (a % m) * (a % m) % m;
    }
    ans %= m;
    return ans;
}
ll inv(ll x, ll p)//x关于p的逆元,p为素数
{
    return pow(x, p - 2, p);
}
ll C(ll n, ll m, ll p)//组合数C(n, m) % p = (n!/m!/(n-m)!)%mod = n!*inv(m!*(n-m)!)%mod = n!*(m!*((n-m)!)^(mod-2))%mod
{
    if(m > n)return 0;
    ll up = 1, down = 1;//分子分母;
    for(int i = n - m + 1; i <= n; i++)up = up * i % p;
    for(int i = 1; i <= m; i++)down = down * i % p;
    return up * inv(down, p) % p;
}
ll Lucas(ll n, ll m, ll p)
{
    if(m == 0)return 1;
    return C(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
}
int main(){
    int m,n;
    while(cin>>m>>n){  //m<n
        cout<<Lucas(m,n,mod)<<endl;
    }
}

 

第三种情况:p不是素数,且n,m比较大---扩展Lucas定理:https://www.cnblogs.com/fzl194/p/9095177.html

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 10;
const int mod = 1e9 + 7;
ll pow(ll a, ll b, ll m)
{
    ll ans = 1;
    a %= m;
    while(b)
    {
        if(b & 1)ans = (ans % m) * (a % m) % m;
        b /= 2;
        a = (a % m) * (a % m) % m;
    }
    ans %= m;
    return ans;
}
ll extgcd(ll a, ll b, ll& x, ll& y)
//求解ax+by=gcd(a, b)
//返回值为gcd(a, b)
{
    ll d = a;
    if(b)
    {
        d = extgcd(b, a % b, y, x);
        y -= (a / b) * x;
    }
    else x = 1, y = 0;
    return d;
}
ll mod_inverse(ll a, ll m)
//求解a关于模上m的逆元
//返回-1表示逆元不存在
{
    ll x, y;
    ll d = extgcd(a, m, x, y);
    return d == 1 ? (m + x % m) % m : -1;
}

ll Mul(ll n, ll pi, ll pk)//计算n! mod pk的部分值  pk为pi的ki次方
//算出的答案不包括pi的幂的那一部分
{
    if(!n)return 1;
    ll ans = 1;
    if(n / pk)
    {
        for(ll i = 2; i <= pk; i++) //求出循环节乘积
            if(i % pi)ans = ans * i % pk;
        ans = pow(ans, n / pk, pk); //循环节次数为n / pk
    }
    for(ll i = 2; i <= n % pk; i++)
        if(i % pi)ans = ans * i % pk;
    return ans * Mul(n / pi, pi, pk) % pk;//递归求解
}

ll C(ll n, ll m, ll p, ll pi, ll pk)//计算组合数C(n, m) mod pk的值 pk为pi的ki次方
{
    if(m > n)return 0;
    ll a = Mul(n, pi, pk), b = Mul(m, pi, pk), c = Mul(n - m, pi, pk);
    ll k = 0, ans;//k为pi的幂值
    for(ll i = n; i; i /= pi)k += i / pi;
    for(ll i = m; i; i /= pi)k -= i / pi;
    for(ll i = n - m; i; i /= pi)k -= i / pi;
    ans = a * mod_inverse(b, pk) % pk * mod_inverse(c, pk) % pk * pow(pi, k, pk) % pk;//ans就是n! mod pk的值
    ans = ans * (p / pk) % p * mod_inverse(p / pk, pk) % p;//此时用剩余定理合并解
    return ans;
}

ll Lucas(ll n, ll m, ll p)
{
    ll x = p;
    ll ans = 0;
    for(ll i = 2; i <= p; i++)
    {
        if(x % i == 0)
        {
            ll pk = 1;
            while(x % i == 0)pk *= i, x /= i;
            ans = (ans + C(n, m, p, i, pk)) % p;
        }
    }
    return ans;
}

int main()
{
    ll n, m, p;
    while(cin >> n >> m >> p)
    {
        cout<<Lucas(n, m, p)<<endl;
    }
    return 0;
}

 

求组合数C(m,n)的多种计算方法

标签:cin   details   article   ext   name   www   ace   html   page   

原文地址:https://www.cnblogs.com/Aiahtwo/p/11132830.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!