标签:swa java 接下来 order 很多 关注 nod 需要 aic
HashMap是在面试中经常会问的一点,很多时候我们仅仅只是知道HashMap他是允许键值对都是Null,并且是非线程安全的,如果在多线程的环境下使用,是很容易出现问题的。 这是我们通常在面试中会说的,但是有时候问到底层的源码分析的时候,为什么允许为Null,为什么不安全,这些问题的时候,如果没有分析过源码的话,好像很难回答, 这样的话我们来研究一下这个源码。看看原因吧。
HashMap最早出现在JDK1.2中,它的底层是基于的散列算法。允许键值对都是Null,并且是非线程安全的,我们先看看这个1.8版本的JDK中HashMap的数据结构吧。
?/*** Basic hash bin node, used for most entries. (See below for* TreeNode subclass, and in LinkedHashMap for its Entry subclass.)*//**Node是hash基础的节点,是单向链表,实现了Map.Entry接口*/static class Node<K,V> implements Map.Entry<K,V> {final int hash;final K key;V value;Node<K,V> next;//构造函数Node(int hash, K key, V value, Node<K,V> next) {this.hash = hash;this.key = key;this.value = value;this.next = next;}public final K getKey() { return key; }public final V getValue() { return value; }public final String toString() { return key + "=" + value; }?public final int hashCode() {return Objects.hashCode(key) ^ Objects.hashCode(value);}?public final V setValue(V newValue) {V oldValue = value;value = newValue;return oldValue;}public final boolean equals(Object o) {if (o == this)return true;if (o instanceof Map.Entry) {Map.Entry<?,?> e = (Map.Entry<?,?>)o;if (Objects.equals(key, e.getKey()) &&Objects.equals(value, e.getValue()))return true;}return false;}}?
TreeNode 是红黑树的数据结构。
/*** Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn* extends Node) so can be used as extension of either regular or* linked node.*/static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {TreeNode<K,V> parent; // red-black tree linksTreeNode<K,V> left;TreeNode<K,V> right;TreeNode<K,V> prev; // needed to unlink next upon deletionboolean red;TreeNode(int hash, K key, V val, Node<K,V> next) {super(hash, key, val, next);}/*** Returns root of tree containing this node.*/final TreeNode<K,V> root() {for (TreeNode<K,V> r = this, p;;) {if ((p = r.parent) == null)return r;r = p;}}?
?public class HashMap<K,V> extends AbstractMap<K,V>implements Map<K,V>, Cloneable, Serializable {?
继承了抽象的map,实现了Map接口,并且进行了序列化。
在类里还有基础的变量
?/*** The default initial capacity - MUST be a power of two.* 默认初始容量 16 - 必须是2的幂*/static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16?/*** The maximum capacity, used if a higher value is implicitly specified* by either of the constructors with arguments.* MUST be a power of two <= 1<<30.* 最大容量 2的30次方*/static final int MAXIMUM_CAPACITY = 1 << 30;?/*** The load factor used when none specified in constructor.* 默认加载因子,用来计算threshold*/static final float DEFAULT_LOAD_FACTOR = 0.75f;?/*** The bin count threshold for using a tree rather than list for a* bin. Bins are converted to trees when adding an element to a* bin with at least this many nodes. The value must be greater* than 2 and should be at least 8 to mesh with assumptions in* tree removal about conversion back to plain bins upon* shrinkage.* 链表转成树的阈值,当桶中链表长度大于8时转成树* threshold = capacity * loadFactor*/static final int TREEIFY_THRESHOLD = 8;?/*** The bin count threshold for untreeifying a (split) bin during a* resize operation. Should be less than TREEIFY_THRESHOLD, and at* most 6 to mesh with shrinkage detection under removal.* 进行resize操作时,若桶中数量少于6则从树转成链表*/static final int UNTREEIFY_THRESHOLD = 6;?/*** The smallest table capacity for which bins may be treeified.* (Otherwise the table is resized if too many nodes in a bin.)* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts* between resizing and treeification thresholds.* 桶中结构转化为红黑树对应的table的最小大小* 当需要将解决 hash 冲突的链表转变为红黑树时,* 需要判断下此时数组容量,* 若是由于数组容量太小(小于 MIN_TREEIFY_CAPACITY )* 导致的 hash 冲突太多,则不进行链表转变为红黑树操作,* 转为利用 resize() 函数对 hashMap 扩容*/static final int MIN_TREEIFY_CAPACITY = 64;?/*** The table, initialized on first use, and resized as* necessary. When allocated, length is always a power of two.* (We also tolerate length zero in some operations to allow* bootstrapping mechanics that are currently not needed.)* 保存Node<K,V>节点的数组* 该表在首次使用时初始化,并根据需要调整大小。 分配时,* 长度始终是2的幂。*/transient Node<K,V>[] table;?/*** Holds cached entrySet(). Note that AbstractMap fields are used* for keySet() and values().* 存放具体元素的集*/transient Set<Map.Entry<K,V>> entrySet;?/*** The number of key-value mappings contained in this map.* 记录 hashMap 当前存储的元素的数量*/transient int size;?/*** The number of times this HashMap has been structurally modified* Structural modifications are those that change the number of mappings in* the HashMap or otherwise modify its internal structure (e.g.,* rehash). This field is used to make iterators on Collection-views of* the HashMap fail-fast. (See ConcurrentModificationException).* 每次更改map结构的计数器*/transient int modCount;?/*** The next size value at which to resize (capacity * load factor).* 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容* @serial*/// (The javadoc description is true upon serialization.// Additionally, if the table array has not been allocated, this// field holds the initial array capacity, or zero signifying// DEFAULT_INITIAL_CAPACITY.)int threshold;?/*** The load factor for the hash table.* 负载因子:要调整大小的下一个大小值(容量*加载因子)。* @serial*/final float loadFactor;?
我们再看看构造方法
?/*** Constructs an empty <tt>HashMap</tt> with the specified initial* capacity and the default load factor (0.75).** @param initialCapacity the initial capacity.* @throws IllegalArgumentException if the initial capacity is negative.* 传入初始容量大小,使用默认负载因子值 来初始化HashMap对象*/public HashMap(int initialCapacity) {this(initialCapacity, DEFAULT_LOAD_FACTOR);}?/*** Constructs an empty <tt>HashMap</tt> with the default initial capacity* (16) and the default load factor (0.75).* 默认容量和负载因子*/public HashMap() {this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted}?/*** Constructs an empty <tt>HashMap</tt> with the specified initial* capacity and load factor.** @param initialCapacity the initial capacity* @param loadFactor the load factor* @throws IllegalArgumentException if the initial capacity is negative* or the load factor is nonpositive* 传入初始容量大小和负载因子 来初始化HashMap对象*/public HashMap(int initialCapacity, float loadFactor) {// 初始容量不能小于0,否则报错if (initialCapacity < 0)throw new IllegalArgumentException("Illegal initial capacity: " +initialCapacity);// 初始容量不能大于最大值,否则为最大值if (initialCapacity > MAXIMUM_CAPACITY)initialCapacity = MAXIMUM_CAPACITY;//负载因子不能小于或等于0,不能为非数字if (loadFactor <= 0 || Float.isNaN(loadFactor))throw new IllegalArgumentException("Illegal load factor: " +loadFactor);// 初始化负载因子this.loadFactor = loadFactor;// 初始化threshold大小this.threshold = tableSizeFor(initialCapacity);}?/*** Returns a power of two size for the given target capacity.* 找到大于或等于 cap 的最小2的整数次幂的数*/static final int tableSizeFor(int cap) {int n = cap - 1;n |= n >>> 1;n |= n >>> 2;n |= n >>> 4;n |= n >>> 8;n |= n >>> 16;return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;}?
在这源码中,loadFactor负载因子是一个非常重要的参数,因为他能够反映HashMap桶数组的使用情况, 这样的话,HashMap的时间复杂度就会出现不同的改变。
当这个负载因子属于低负载因子的时候,HashMap所能够容纳的键值对数量就是偏少的,扩容后,重新将键值对 存储在桶数组中,键与键之间产生的碰撞会下降,链表的长度也会随之变短。
但是如果增加负载因子当这个负载因子大于1的时候,HashMap所能够容纳的键值对就会变多,这样碰撞就会增加, 这样的话链表的长度也会增加,一般情况下负载因子我们都不会去修改。都是默认的0.75。
resize()这个方法就是重新计算容量的一个方法,我们看看源码:
?/*** Initializes or doubles table size. If null, allocates in* accord with initial capacity target held in field threshold.* Otherwise, because we are using power-of-two expansion, the* elements from each bin must either stay at same index, or move* with a power of two offset in the new table.** @return the table*/final Node<K,V>[] resize() {//引用扩容前的Entry数组Node<K,V>[] oldTab = table;int oldCap = (oldTab == null) ? 0 : oldTab.length;int oldThr = threshold;int newCap, newThr = 0;if (oldCap > 0) {?// 扩容前的数组大小如果已经达到最大(2^30)了//在这里去判断是否达到最大的大小if (oldCap >= MAXIMUM_CAPACITY) {//修改阈值为int的最大值(2^31-1),这样以后就不会扩容了threshold = Integer.MAX_VALUE;return oldTab;}?// 如果扩容后小于最大值 而且 旧数组桶大于初始容量16, 阈值左移1(扩大2倍)else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&oldCap >= DEFAULT_INITIAL_CAPACITY)newThr = oldThr << 1; // double threshold}// 如果数组桶容量<=0 且 旧阈值 >0else if (oldThr > 0) // initial capacity was placed in threshold//新的容量就等于旧的阀值newCap = oldThr;else { // zero initial threshold signifies using defaults// 如果数组桶容量<=0 且 旧阈值 <=0// 新容量=默认容量// 新阈值= 负载因子*默认容量newCap = DEFAULT_INITIAL_CAPACITY;newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);}// 如果新阈值为0if (newThr == 0) {// 重新计算阈值float ft = (float)newCap * loadFactor;newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?(int)ft : Integer.MAX_VALUE);}//在这里就会 更新阈值threshold = newThr;@SuppressWarnings({"rawtypes","unchecked"})//创建新的数组Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];?// 覆盖数组桶table = newTab;// 如果旧数组桶不是空,则遍历桶数组,并将键值对映射到新的桶数组中//在这里还有一点诡异的,1.7是不存在后边红黑树的,但是1.8就是有红黑树if (oldTab != null) {for (int j = 0; j < oldCap; ++j) {Node<K,V> e;if ((e = oldTab[j]) != null) {oldTab[j] = null;if (e.next == null)newTab[e.hash & (newCap - 1)] = e;?// 如果是红黑树else if (e instanceof TreeNode)?// 重新映射时,然后对红黑树进行拆分((TreeNode<K,V>)e).split(this, newTab, j, oldCap);else { // preserve order// 如果不是红黑树,那也就是说他链表长度没有超过8,那么还是链表,//那么还是会按照链表处理Node<K,V> loHead = null, loTail = null;Node<K,V> hiHead = null, hiTail = null;Node<K,V> next;?// 遍历链表,并将链表节点按原顺序进行分组do {next = e.next;if ((e.hash & oldCap) == 0) {if (loTail == null)loHead = e;elseloTail.next = e;loTail = e;}else {if (hiTail == null)hiHead = e;elsehiTail.next = e;hiTail = e;}} while ((e = next) != null);// 将分组后的链表映射到新桶中if (loTail != null) {loTail.next = null;newTab[j] = loHead;}if (hiTail != null) {hiTail.next = null;newTab[j + oldCap] = hiHead;}}}}}return newTab;}?
所以说在经过resize这个方法之后,元素的位置要么就是在原来的位置,要么就是在原来的位置移动2次幂的位置上。 源码上的注释也是可以翻译出来的
?/*** Initializes or doubles table size. If null, allocates in* accord with initial capacity target held in field threshold.* Otherwise, because we are using power-of-two expansion, the* elements from each bin must either stay at same index, or move* with a power of two offset in the new table.** @return the table?如果为null,则分配符合字段阈值中保存的初始容量目标。否则,因为我们使用的是2次幂扩展,所以每个bin中的元素必须保持相同的索引,或者在新表中以2的偏移量移动。?*/final Node<K,V>[] resize() .....?
所以说他的扩容其实很有意思,就有了三种不同的扩容方式了,
在HashMap刚初始化的时候,使用默认的构造初始化,会返回一个空的table,并且 thershold为0,因此第一次扩容的时候默认值就会是16. 同时再去计算thershold = DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY = 16*0.75 = 12.
如果说指定初始容量的初始HashMap的时候,那么这时候计算这个threshold的时候就变成了 threshold = DEFAULT_LOAD_FACTOR * threshold(当前的容量)
如果HashMap不是第一次扩容,已经扩容过了,那么每次table的容量
threshold也会变成原来的2倍。
之前看1.7的源码的时候,是没有这个红黑树的,而是在1.8 之后做了相应的优化。 使用的是2次幂的扩展(指长度扩为原来2倍)。 而且在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,这样子他就剩下了计算hash的时间了。
看完这个源码,翻译了一节节的英文,算是大致明白了一点源码内容了,有什么讨论的问题咱们可以一起讨论一下,感谢观看。
Java 极客技术公众号,是由一群热爱 Java 开发的技术人组建成立,专注分享原创、高质量的 Java 文章。如果您觉得我们的文章还不错,请帮忙赞赏、在看、转发支持,鼓励我们分享出更好的文章。
关注公众号,大家可以在公众号后台回复“博客园”,获得作者 Java 知识体系/面试必看资料。
标签:swa java 接下来 order 很多 关注 nod 需要 aic
原文地址:https://www.cnblogs.com/justdojava/p/11145023.html