码迷,mamicode.com
首页 > 其他好文 > 详细

LookingFastandSlow: Memory-GuidedMobileVideoObjectDetection

时间:2019-07-07 12:23:21      阅读:128      评论:0      收藏:0      [点我收藏+]

标签:时序   memory   vat   技术   fas   gui   clu   ati   ttl   

Google put the method to extract different feature
based on Slow Network and Fast Network

The First Colum The Second Column
innovation point1 基于存储引导的交替模型技术图片
InterIeaved Models slow network and fastnetwork
is made up by two MobilNetV2
the depth multiplier of the two models are different,
before is 1.4,and the after is 0.35技术图片
innovation point2 记忆单元, Memory module
存储模型,
LSTM可以高效处理时序信息
但是卷积运算量大
ConvLSTM将CNN与LSTM结合
ConLSTM is designed by the
时序时间信息的图像
1 innovation of the ConvLSTM 增加了bottleneck Gate 和output 的跳跃连接
2 innovation of the ConvLSTM 将LSTM单元进行分组卷积
feature maps 原本是H * W * N
将其分为G group
每个LSTM处理的HWN/G 的feature maps
the step of LSTM the first step :
f(t) = sigmoid(W(f) * [h(t-1), x(t)] + b(f) )
LSTM include the activate function (sigmoid)
and the action (pointwise)
the first of the LSTM is sigmoid
The step of LSTM The second step : i(t) = sigmoid( W(i) * [ h(t-1), x(t)] + b(i) );
C~(t) = tanh( W(C)* [h(t-1), x(t)] + b(c) )
Tanh create a new 候选值vector
The step of LSTM The third step :
C(t) = f(t) * C(t-1) + i(t) * C~(t)

LookingFastandSlow: Memory-GuidedMobileVideoObjectDetection

标签:时序   memory   vat   技术   fas   gui   clu   ati   ttl   

原文地址:https://www.cnblogs.com/hugeng007/p/11145903.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!