标签:否则 import save targe 报错 建立 svm data 保存
import pickle from sklearn.externals import joblib from sklearn.svm import SVC from sklearn import datasets #定义一个分类器 svm = SVC() iris = datasets.load_iris() X = iris.data y = iris.target #训练模型 svm.fit(X,y) #1.保存成Python支持的文件格式Pickle #在当前目录下可以看到svm.pickle with open(‘svm.pickle‘,‘wb‘) as fw: pickle.dump(svm,fw) #加载svm.pickle with open(‘svm.pickle‘,‘rb‘) as fr: new_svm1 = pickle.load(fr) # print (new_svm1.predict(X[0:1])) #2.保存成sklearn自带的文件格式Joblib joblib.dump(svm,‘svm.pkl‘) #加载svm.pkl new_svm2 = joblib.load(‘svm.pkl‘) print (new_svm2.predict(X[0:1]))
总结:
1.训练好一个Model以后需要保存和再次预测 2.有两个模块用来保存模型 : pickle和joblib 3.Sklearn的模型导出本质上是利用Python的Pickle机制。对Python的函数进行序列化,也就是把训练好的Transformer函数序列化并存为文件。 代码流程: 1.保存Model(注:save文件夹要预先建立,否则会报错) joblib.dump(clf, ‘save/clf.pkl’) 2.读取Model clf2 = joblib.load(‘save/clf.pkl’) 3.测试读取后的Model print(clf2.predict(X[0:1]))**
标签:否则 import save targe 报错 建立 svm data 保存
原文地址:https://www.cnblogs.com/ywjfx/p/11152696.html