本文是已读书籍的内容摘要,少部分有轻微改动,但不影响原文表达。
<深入浅出学统计>
统计值无处不在。我们伴随着统计值出生,离开后也会化为统计值。
统计帮助我们把握重要事件的大量数据。进而帮助我们更好地理解这个千变万化的世界,并操纵世界。
统计的真正力量更为特别,统计帮助我们在信息有限的情况下,做出充满信心的决策。
我们总是希望能够得到所有数据,接着算出结果,但显然这很难做到。
实际上,我们只能得到的有限的信息,但好在通过统计工具,能使用这些有限的信息,对所有的情况做出充满信心的描述。
以下内容主要讲的就是统计学的基本问题:如何通过样本来充满信心的描述整体。
统计并不只关系到数字,而且也关系到我们的信心。
统计的确需要处理大量数字,而且处理起来并不是总是那么简单。
数字很容易被用于撒谎。这通常会让人们对数字过度怀疑,从而忽略了数字的真正威力。
这要求我们在处理任何数字时,都必须带着适当的怀疑。
不管拿到什么数字,都应该问这样几个问题:
很多时候,我们都不可能清楚所有要了解的东西,只能通过研究样本,进而了解总体。
必须知晓的事实:
通过各种方法采集样本观测值,这个过程并不简单。
最大的挑战可能在于要准确地指出样本中包含哪些内容。目的是避免样本出现偏差,因为偏差可能会导致我们曲解总体。
理想情况是,采集的样本能正确反映总体。
通过随机采集样本来避免偏差。
实践中。我们常常需要设想所有可能令样本发生偏差的问题,并确保这种问题不会出现。
随机样本效果显著的原因是,它表明我们抽取的任何一个样本的可能性都和抽取任何其他样本的可能性是一样大的。
确保样本必须正确是重中之重,因为随机抽样是一切统计调查的关键。
问题的特性十分重要,因为我们的提问类型决定我们最终得到的是类别型数据,还是数值型数据。
这两种数据各自为政,根本差别:是否能够对其进行数学运算。
在下列情况下采集类别数据:
在下列情况下采集数值型数据:
尽管可以通过类别数据来了解样本的构成比例,但总得来说,数值型数据更为有用。
在采集到大量数值型数据后,首先要做的就是利用这些数据“画图”,也就是观察现有的数据。
简单的图形能让我们集中关注数据表达的确切意义。
原文地址:https://www.cnblogs.com/anliven/p/11148937.html