码迷,mamicode.com
首页 > 其他好文 > 详细

R2CNN论文思路记录

时间:2019-07-10 20:06:38      阅读:160      评论:0      收藏:0      [点我收藏+]

标签:建议   code   loss   策略   分类   height   strong   ota   ima   

Rotational region cnn

 

我们的目标是检测任意方向的场景文本,与RRPN类似,我们的网络也基于FasterR-CNN ,但我们采用不同的策略,而不是产生倾斜角度建议。

我们认为RPN有资格生成文本候选,并根据RPN提出的候选文本预测方向信息

检测步骤:

技术图片

如图所示:a.原图片

     b.通过rpn得到的text regions

     c.预测轴对齐框和倾斜框

     d.对倾斜框进行非极大值抑制得到预测结果

 

整个检测网络的结构如图:

技术图片

提取特征的步骤跟之前的RCNN系列一样,基础CNN网络提取出特征,

然后由RPN提取出文本区域(RPN生成包围任意方向文本的轴对齐边界框),这里已经生成轴对齐框,送入ROI POOLING层进行多个尺度的池化操作(7*7,3*11,11*3)原先的Faster rcnn只有7*7,这三种是专门用来检测常见的文本框。并将pooled特征串联;

通过两个全连接层之后,进行

1.文本/非文本的分类

2.轴对齐框包围的倾斜框的预测,倾斜框的预测(x1,y1,x2,y2,h)这里解释下,倾斜框的坐标表示,通过矩形框顺时针的前两个点的坐标来确定一条线,然后通过h来确定宽度。

3.倾斜框的非极大值抑制,得到结果

 倾斜框的坐标表示如图:

技术图片

对于RPN做出的改动:

更多的小场景检测。通过在RPN中利用较小的anchor比例来解决这一问题。

在Faster R-CNN中的原始anchor 缩放是(8,16,32)

我们研究了两种策略:

  a)将anchor比例缩放更改为较小的尺寸,并使用(4,8,16);

  b)增加一个新的anchor缩放并利用(4,8,16,32)
对roi pooling做出的改动:

加入11*3和3*11,使用不同的roi pooling大小获取更多特征, pooled 特征被连接在一起以便进一步检测;

 

R2CNN的loss函数:

技术图片

分为两部分,Lcls是分类的loss,下面分别是轴对齐框的Loss和倾斜框的Loss

 

R2CNN论文思路记录

标签:建议   code   loss   策略   分类   height   strong   ota   ima   

原文地址:https://www.cnblogs.com/ywheunji/p/11166146.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!