标签:情况下 ssi 卷积 训练 设备 通过 执行 允许 效率
摘要-本文使用深度学习的方法在大规模MIMO网络的下行链路中执行max-min和max-prod功率分配。更确切地说,与传统的面向优化的方法相比,训练深度神经网络来学习用户设备(UE)的位置和最优功率分配策略之间的映射,然后用于预测新的UE集合的功率分配曲线?与传统的优化定向方法相比,使用深度学习的方法显著提高了功率分配的复杂性-性能折衷?特别地,所提出的方法不需要计算任何统计平均值,而是需要使用标准方法来计算,并且能够保证接近最优的性能。
1 引言
大规模MIMO是指一种无线网络技术,其中基站(BSs)配备了大量的天线,通过空间复用技术为众多用户设备(UE)服务。近年来出现了令人兴奋的事态发展。在工业上,这项技术已被纳入5G新无线电标准。在学术界,被认为施加了根本的限制长期的试验性污染问题,终于得到了解决。更准确地说,有些文献中表明,在最优最小均方误差(MMSE)组合/预编码和少量空间信道相关的情况下,上行链路(UL)和下行链路(DL)中的容量随天线数目的增加而增加。结合/预编码和少量空间信道相关,在上行链路(UL)和下行链路(DL)中,容量随天线数目的增加而增加。
在这项工作中,我们使用深度学习来解决大规模MIMO网络DL中的max-min和max-prod功率分配问题。 我们受到最近机器学习技术成功应用的爆炸式增长的启发[5],它证明了深度神经网络学习丰富模式和逼近任意函数映射的能力[5],[6]。 特别地,我们的目的是证明UE的位置(可以通过全球定位系统容易地获得)可以被神经网络有效地用于获得接近最佳的性能。 这允许基本上降低功率分配的复杂性(因为需要简单的矩阵矢量运算)并且因此使得可以实时地执行功率分配,即跟随UE的位置的变化。 除此之外,训练这样的神经网络是相当方便的,因为通过运行现成的优化算法可以容易地获得训练样本。
在文献[7]中也考虑了无线网络中无线电资源分配的深度学习,其中速率最大化的WMMSE算法已经由完全连接的前馈神经网络模拟,并且在文献[8]中,卷积神经网络用于用户 - 单元关联。
2 大规模MIMO网络
对具有L个小区的大规模MIMO进行深度学习,每个小区包括具有M根天线的BS和K个UEs。
A 信道估计
B 下行频谱效率
C 预编码设计
3 功率分配
4 基于深度学习的功率分配
5 性能评估
6 结论
在这项工作中,我们提出了一个深度学习框架,通过MR和M-MMSE预编码在大规模MIMO网络的DL中分配功率。 考虑了两种功率分配策略,即max-min和max-prod。 我们表明,通过两种策略,经过适当训练的前馈NN能够学习如何为每个小区中的UE分配功率。 这是通过仅使用网络中UE的位置的知识来实现的,从而大大降低了优化过程的复杂性和处理时间。 数值结果表明深度学习框架使用M-MMSE而不是MR表现更好。 这可能是由于M-MMSE允许NN充分利用其可用信息。 此外,最大最小政策显示更难学。 实际上,我们需要求助于具有相对较多可训练参数的递归神经网络。
对于相对较小的Massive MIMO网络进行分析,其中L = 4个小区并且每个小区K = 5个UE。 需要进一步研究以了解随着网络规模的增加,开发框架的表现如何。 此外,实际上每个小区的UE数量不断变化。 处理这种情况的一种简单方法是对于所有可能的UE配置,每个BS具有多个NN。 但是,这种解决方案不具备可扩展性。 除了这些以及许多其他开放性问题之外,用于Massive MIMO中的实时功率分配的深度学习工具的集成似乎非常有希望。
标签:情况下 ssi 卷积 训练 设备 通过 执行 允许 效率
原文地址:https://www.cnblogs.com/JadeZhao/p/11167847.html