码迷,mamicode.com
首页 > 其他好文 > 详细

HDU-2476 String painter 区间DP

时间:2019-07-14 10:51:40      阅读:79      评论:0      收藏:0      [点我收藏+]

标签:can   部分   再计算   i++   col   code   i+1   std   names   

题意:给你一个长度相等的A串和B串,每次可以把一个连续的区间刷成一个字母,问从A串到B串的最少操作数。

解法:虽然这类题一看到就知道是区间DP,但是之前只做过类似从空串变成某个串的题目,所以没想到怎么做(太垃圾啦qwq)。看了题解才知道要分两步走  ①从空串变成B串  ②从A串变成B串 。

第一步就是一个经典的区间DP问题了,dp[i][j]=min( dp[i+1][k]+dp[k+1][j]+(B[i]!=B[k]) ) (i<k<=j),意思就是如果B[i]=B[k]的话B[i]这个点就不用花费操作去刷所以是变成了dp[i+1][k]+dp[k+1][j]这两部分,但是如果B[i]不等于B[k]的话,就要花费一个操作去刷,所以加上两部分还要加一。

第二部设ans[i]为把前i个字符A->Bz的最少操作数,那么ans[i]=ans[i-1]  (A[i]==B[i]) ,ans[i]=min(ans[j]+dp[j+1][i]) (0<=j<=i)  。

然后就可以AC了。

#include<bits/stdc++.h>
using namespace std;
const int N=1e2+10;
int n;
char A[N],B[N];
int dp[N][N],ans[N];

int main()
{
    while (scanf("%s",A+1)!=EOF) {
        scanf("%s",B+1);
        n=strlen(A+1);
        memset(dp,0,sizeof(dp));
        for (int i=1;i<=n;i++) dp[i][i]=1;
        for (int l=2;l<=n;l++) {  //先计算 空->B 
            for (int i=1;i<=n;i++) {
                int j=i+l-1;
                if (j>n) break;
                dp[i][j]=dp[i][j-1]+1;
                //dp[i][j]=dp[i+1][j]+1;
                for (int k=i+1;k<=j;k++)
                    dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k+1][j]+(B[i]!=B[k]));
            }
        }
        
        memset(ans,0,sizeof(ans));
        for (int i=1;i<=n;i++) { //再计算 A->B 
            ans[i]=0x3f3f3f3f;
            if (A[i]==B[i]) ans[i]=ans[i-1];
            for (int j=0;j<i;j++) ans[i]=min(ans[i],ans[j]+dp[j+1][i]);
        }
        printf("%d\n",ans[n]);    
    }
    return 0;
}

 

HDU-2476 String painter 区间DP

标签:can   部分   再计算   i++   col   code   i+1   std   names   

原文地址:https://www.cnblogs.com/clno1/p/11183249.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!