码迷,mamicode.com
首页 > 其他好文 > 详细

Redundant Paths 分离的路径(边双连通分量)

时间:2019-07-14 13:22:27      阅读:224      评论:0      收藏:0      [点我收藏+]

标签:无向图   put   cc++   ant   没有   tar   circle   src   open   

题干:
  为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分离的路径,这样她们就有多一些选择.每对草场之间已经有至少一条路径.给出所有 R ( F - 1 ≤ R ≤ 10000 )条双向路的描述,每条路连接了两个不同的草场,请计算最少的新建道路的数量, 路径由若干道路首尾相连而成.两条路径相互分离,是指两条路径没有一条重合的道路.但是,两条分离的路径上可以有一些相同的草场. 对于同一对草场之间,可能已经有两条不同的道路,你也可以在它们之间再建一条道路,作为另一条不同的道路,请输出最少的需要新建的道路数.

题解:

  加减道路?加减边?比较简单地就可以想到边双连通分量

  本题要求使每一个节点都可由至少两条道路到达,那么满足条件的节点就是度数 >= 2 的节点(无向图的度)。度数为 1 的节点就是不满足题意的。

  在两点间建边有三种情况:
  1、两个度数 >= 2 的节点相连:没用,舍掉。

  2、一个度数 >= 2 ,另一个 = 1 的两个节点相连:使一个节点满足题意。

  3、两个度数 = 1 的节点相连:使两个节点满足题意。

  十分显然,两个度数 = 1 的节点相连一定是最优的。这也表明,本题核心在于找到 度数 = 1 的节点。

100%  错解(点双连通分量):

  像以往的点双连通分量,先缩点,求一下度数即可。

  但这样的 AC 代码并不符合点双连通分量的求法(在实现过程中,需要在 tarjan 中判断掉父节点;在建边中,需要判掉重边)。

  只能说在这道题中,数据并没有考虑这种打法,虽然 AC,一定是错解。

Code:

技术图片
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 #define $ 5111
 5 using namespace std;
 6 int m,n,k,t,dfn[$],low[$],first[$],tot1,tar,sta[$],up,circle,tr=-1;
 7 int sum,cir[$],out[$];
 8 bool judge[$],vis[$][$];
 9 struct tree{    int to,next;    }a[$<<5],aa[$<<5];
10 inline int min(int x,int y){    return x<y?x:y;    }
11 inline void add(int x,int y){
12     a[++tot1]=(tree){    y,first[x]    };
13     first[x]=tot1;
14     a[++tot1]=(tree){    x,first[y]    };
15     first[y]=tot1;
16 }
17 inline void tarjan(int x,int dad,int tmp=0){
18     dfn[x]=low[x]=++tar;
19     sta[++up]=x;
20     for(register int i=first[x];i;i=a[i].next){
21         int to=a[i].to;
22         if(to==dad) continue;
23         if(!dfn[to]){
24             tarjan(to,x);
25             low[x]=min(low[x],low[to]);
26         }
27         else low[x]=min(low[x],dfn[to]);
28     }
29     if(dfn[x]==low[x]){
30         ++circle;
31         do{
32             tmp=sta[up--];
33             cir[tmp]=circle;
34         }while(tmp!=x);
35     }
36 }
37 signed main(){
38     scanf("%d%d",&n,&m);
39     for(register int i=1,x,y;i<=m;++i){
40         scanf("%d%d",&x,&y);
41         if(vis[x][y]==0) add(x,y),vis[x][y]=vis[y][x]=1;
42     }
43     tarjan(1,0);
44     for(register int i=1;i<=n;++i)
45         for(register int j=first[i];j;j=a[j].next){
46             int to=a[j].to;
47             if(cir[i]!=cir[to]) out[cir[i]]++;
48         }
49     for(register int i=1;i<=circle;++i) if(out[i]<2) sum++;
50     circle==1?puts("0"):printf("%d\n",(sum+1)/2);
51 }
View Code

100%  正解(边双连通分量):

  正解当然是边双连通分量。

 1 inline void tarjan(int x,int opt){
 2     dfn[x]=low[x]=++tar;
 3     for(register int i=first[x];i;i=a[i].next){
 4         int to=a[i].to;
 5         if(!dfn[to]){
 6             tarjan(to,i);
 7             low[x]=min(low[x],low[to]);
 8             if(low[to]>dfn[x]) br[i]=br[i^1]=1; 
 9         }
10         else if(i!=(opt^1)) low[x]=min(low[x],dfn[to]);
11     }
12 }
13 inline void dfs(int x){
14     in[x]=dcc;
15     for(register int i=first[x];i;i=a[i].next){
16         int to=a[i].to;
17         if(in[to]||br[i]) continue;
18         dfs(to);
19     }
20 }

  同样是先缩点,求一下度数即可。

Code:

技术图片
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 #define $ 5111
 5 using namespace std;
 6 int m,n,sum,dfn[$],low[$],first[$],tot,tar,br[$],up,circle,dcc,in[$],out[$];
 7 struct tree{    int to,next;    }a[$<<5],aa[$<<5];
 8 inline int min(int x,int y){    return x<y?x:y;    }
 9 inline void add(int x,int y){
10     a[++tot]=(tree){    y,first[x]    };
11     first[x]=tot;
12     a[++tot]=(tree){    x,first[y]    };
13     first[y]=tot;
14 }
15 inline void tarjan(int x,int opt){
16     dfn[x]=low[x]=++tar;
17     for(register int i=first[x];i;i=a[i].next){
18         int to=a[i].to;
19         if(!dfn[to]){
20             tarjan(to,i);
21             low[x]=min(low[x],low[to]);
22             if(low[to]>dfn[x]) br[i]=br[i^1]=1; 
23         }
24         else if(i!=(opt^1)) low[x]=min(low[x],dfn[to]);
25     }
26 }
27 inline void dfs(int x){
28     in[x]=dcc;
29     for(register int i=first[x];i;i=a[i].next){
30         int to=a[i].to;
31         if(in[to]||br[i]) continue;
32         dfs(to);
33     }
34 }
35 signed main(){
36     scanf("%d%d",&n,&m); tot++;
37     for(register int i=1,x,y;i<=m;++i) scanf("%d%d",&x,&y),add(x,y);
38     tarjan(1,0);
39     for(register int i=1;i<=n;++i)  if(!in[i]) dcc++,dfs(i);
40     for(register int i=2,x,y;i<=tot;++i){
41         x=a[i^1].to,y=a[i].to;
42         if(in[x]!=in[y]) out[in[y]]++;
43     }
44     for(register int i=1;i<=dcc;++i) if(out[i]==1) sum++;
45     dcc==1?puts("0"):printf("%d\n",(sum+1)/2);
46 }
View Code

 

Redundant Paths 分离的路径(边双连通分量)

标签:无向图   put   cc++   ant   没有   tar   circle   src   open   

原文地址:https://www.cnblogs.com/OI-zzyy/p/11183705.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!