标签:最小 stream 若是 class 乐观锁 node节点 实现 内存 集合类
分析了一部分 , 有些是看网上的其他博客学习的 . 有些是根据自己的理解写的 .
public class TestHashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable { //序列号 private static final long serialVersionUID = 362498820763181265L; /** * map是键值对的存储方式 , 链表加数组的存储结构 . 1<<4 = 16即是数组的默认初始容量 . * */ static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 /** * 最大容量 : */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * 默认加载因子 */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * 当桶(bucket)上的结点数大于这个值时会转成红黑树 */ static final int TREEIFY_THRESHOLD = 8; /** * 当bucket[桶]上的节点数小于6时将红黑树结构转为链表 */ static final int UNTREEIFY_THRESHOLD = 6; /** * 最小树形化容量阈值:即 当哈希表中的容量 > 该值时,才允许树形化链表 (即 将链表 转换成红黑树) * 否则,若桶内元素太多时,则直接扩容,而不是树形化 * 为了避免进行扩容、树形化选择的冲突,这个值不能小于 4 * TREEIFY_THRESHOLD */ static final int MIN_TREEIFY_CAPACITY = 64; /** * 泛型 : 代表存储的键值对 * @param <K> 键的类型 * @param <V> 值的类型 */ static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; V value; Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } } /* ---------------- Static utilities -------------- */ /** * 计算存储的数据的键的hash . 为避免计算key值时出现碰撞 , 针对hash进行重写 .在原有objects求hash的基础上 , 对key的hash值幂等于右移key的hash值的16位 * @param key * @return */ static final int hash(Object key) { int h; // 两个值做异或,最终相同的可能性很大 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } /** * 判断对象是否实现compare接口 , 若实现 : 返回运营的对象本身类型 . 否则 : 返回null * @param x * @return */ static Class<?> comparableClassFor(Object x) { if (x instanceof Comparable) { Class<?> c; Type[] ts, as; Type t; ParameterizedType p; if ((c = x.getClass()) == String.class) // bypass checks return c; if ((ts = c.getGenericInterfaces()) != null) { for (int i = 0; i < ts.length; ++i) { if (((t = ts[i]) instanceof ParameterizedType) && ((p = (ParameterizedType)t).getRawType() == Comparable.class) && (as = p.getActualTypeArguments()) != null && as.length == 1 && as[0] == c) // type arg is c return c; } } } return null; } /** * Returns k.compareTo(x) if x matches kc (k‘s screened comparable * class), else 0. * 如果x的类型是kc,返回k.compareTo(x)的比较结果 * 如果x为空,或者类型不是kc,返回0 */ @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable static int compareComparables(Class<?> kc, Object k, Object x) { return (x == null || x.getClass() != kc ? 0 : ((Comparable)k).compareTo(x)); } /** * Returns a power of two size for the given target capacity. * 大于输入参数且最近的2的整数次幂的数。最大值为1<< 30 . */ static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } /* ---------------- Fields -------------- */ /** * 存储元素的数组,总是2的幂次倍 */ transient Node<K,V>[] table; /** * 存放具体元素的集 : 为键值对映射关系 */ transient Set<Map.Entry<K,V>> entrySet; /** * The number of key-value mappings contained in this map. * 集合的长度 */ transient int size; /** * 修改次数 : hashMap本身是线程不安全的 . 这个属性是在迭代map集合时 , * 在迭代的过程中有其他线程对该集合进行修改(增/删/改)时 .会抛出异常,一定程度上保证线程修改的可见性 */ transient int modCount; /** * The next size value at which to resize (capacity * load factor). * 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容 * @serial */ int threshold; /** * The load factor for the hash table. * 填充因子 * @serial */ float loadFactor; /* ---------------- Public operations -------------- */ /** * 构造器: 自定义默认加载容量,及填充因子 * @param initialCapacity * @param loadFactor */ public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); } /** * 构造器 : 自定义默认加载容量 * @param initialCapacity */ public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } /** * 无参构造 */ public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted } /** * 构造器 : 把原有的集合数据放到里面 */ public HashMap(Map<? extends K, ? extends V> m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false); } /** * 函数将集合m的所有元素存入本HashMap实例中。 * */ final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) { //s为m的实际元素个数 int s = m.size(); if (s > 0) { // 判断table是否已经初始化 if (table == null) { // pre-size // 未初始化 : 基于s定义table初始化大小: 不允许超出最大容量 float ft = ((float)s / loadFactor) + 1.0F; int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY); // 计算得到的t大于阈值,则初始化阈值 if (t > threshold) threshold = tableSizeFor(t); } //table已初始化,并且m元素个数大于阈值,进行扩容处理 else if (s > threshold) resize(); //将m中的所有元素添加至HashMap中 for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) { K key = e.getKey(); V value = e.getValue(); putVal(hash(key), key, value, false, evict); } } } /** * map集合长度----数组的长度 * @return */ public int size() { return size; } /** * 判断是否为空集合 * @return */ public boolean isEmpty() { return size == 0; } /** * 根据K获取value * @param key * @return */ public V get(Object key) { //临时变量 :节点e Node<K,V> e; //1. 根据key获取hash值 //2. 根据key的hash值及key对象获取对应的节点Node //3. 把获取到的节点对象赋值给e //4. 判断当前节点e是否为null .为null : 直接返回null . 不为null : 获取当前节点对应的value值 return (e = getNode(hash(key), key)) == null ? null : e.value; } /** * 实现了map类中的get方法及相关方法 * @param hash key的hash值 : 调用的上面的hash方法 : key.hashCdoe() ^ key.hashCdoe >>> 16 : 右移16位[且忽略正负符号] * @param key key对象 * @return 当前节点Node对象 , 或者为null或者不存在 */ final Node<K,V> getNode(int hash, Object key) { //临时变量 : 节点数组对象 Node<K,V>[] tab; //节点对象 : first: 第一个节点 . e : 节点对象 Node<K,V> first, e; int n; K k; //1. 临时变量赋值 : tab= table . n = table.length . first = tab[(n - 1) & hash] //2. 判断 : table数组不为null 且 table数组长度 > 0, 即有数据 且第一个节点不为null if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { //针对key对象进行判断是否相同 . hash值 & 对象本身内容 & 是否同一个对象 //1 .满足以上非空判断情况下 , 判断first节点的hash值[为插入数据时计算所得]是否等于当前要存储的key的hash值 //2 .给临时变量赋值 : k = first.key 判断节点first的key对象是否同要存储的key对象相同 即为同一个对象 //3 .key对象不为null且内容相同 if (first.hash == hash && ((k = first.key) == key || (key != null && key.equals(k)))) return first; //若不满足以上情况. 则获取first下一个节点并对e进行初始化赋值 if ((e = first.next) != null) {//判断first下一个节点不为null //判断是否为红黑树结构 if (first instanceof TreeNode) //若为红黑树结构 : 1. first节点强转为TreeNode<K , V>对象,并根据hash(key) & key获取节点对象并返回 return ((TreeNode<K,V>)first).getTreeNode(hash, key); //不是红黑树结构 : 即当前仍是链表结构 . 则在e节点不为null的情况下 循环获取Node节点e do { //当节点e满足key相同 , 直接返回节点e if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; } /** * 判断key是否存在 : 通过key获取节点 . 当节点不为null的情况下 . 证明已存在 . 这个过程中不判断value值 * @param key * @return */ public boolean containsKey(Object key) { return getNode(hash(key), key) != null; } /** * 存储键值对数据 * @param key 键 * @param value 值 * @return */ public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } /** * 存键值对的方法 * @param hash 键的hash值 * @param key 键 * @param value 值 * @param onlyIfAbsent 是否替换oldValue * @param evict * @return */ final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; //如果 : table未初始化或者长度为0时 if ((tab = table) == null || (n = tab.length) == 0) //进行扩容操作 n = (tab = resize()).length; //TODO : 给节点P进行初始化赋值: p = tab[i = (n - 1) & hash] //如果当前数组不为空 且在数组中 根据key的hash值 & n-1对应的下标处的节点为null // 生成新的节点 , 并把value放入桶中 , 此时这个节点是在数组中而不是链表中 if ((p = tab[i = (n - 1) & hash]) == null) //生成新的节点并把数据放入桶中 tab[i] = newNode(hash, key, value, null); //如果当前数组即不为空且在数组中当前hash值 & n-1 对应的下标的节点不为null时 , // 往数组中该下标对应的 链表或者红黑树中插入value值 else { Node<K,V> e; K k; //1. 比较节点P的hash值与要存储的key的hash值是否相同 , //2. 对局部变量k = p.key 比较节点P的key对象是否同要存储的key是相同的 , 或者要存储的key不为null 且 key对象即为节点P的key对象 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) //两个条件满足的情况下 , 将该数组的第一个元素赋值给e : e = p e = p; //如果两个条件不满足 , 即key不相等 , 则判断是否为红黑树结构 else if (p instanceof TreeNode) //若是红黑树结构 : 则把对应的键值对数据放入tree中 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); //如果两个条件均不满足且不是红黑树结构 else { //则循环链表数据 , 在链表最末插入节点 for (int binCount = 0; ; ++binCount) { //对e进行赋值 , 且链表中对比节点p的下一个节点是否为null if ((e = p.next) == null) { //若为null , 初始化创建新的节点,并存储目标数据 p.next = newNode(hash, key, value, null); //判断当前循环次数是否大于7 . 是 : 则将链表转换为红黑树结构 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); //停止并跳出循环 break; } //e[也就是节点p的下一个节点]节点不为null时 ,判断e的hash值即key是否相同 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) //若相同 , 则停止并跳出循环 break; //若p的下一个节点的key与要存储的key不相同,则对节点P重新赋值 : 此时 : p = p.next; p = e; } } //节点e不为null , 即目标key-value的key在map中已存在 if (e != null) { // existing mapping for key //取出上一个value值 V oldValue = e.value; //onlyIfAbsent : true : 不替换当前value值 , false : 替换当前value值 . //若替换当前value值 或者当前value值为null if (!onlyIfAbsent || oldValue == null) //替换e节点处的value值为目标要存储的value值 e.value = value; //访问后回调函数 afterNodeAccess(e); //返回旧的value值 : jar包中putval方法不可调用 return oldValue; } } //集合修改次数+1 ++modCount; //1. 当前集合长度size+1 2. 若size> 当前加载因子 扩容 if (++size > threshold) resize(); //集合处理后回调 : 主要是在linkedHashMap中应用 . hashmap本身并无实际意义 afterNodeInsertion(evict); return null; } /** * 扩容 * @return 返回扩容后的Node数组 */ final Node<K,V>[] resize() { //现有的table Node<K,V>[] oldTab = table; //oldCap原有table容量 : 原table为null? Y : oldCap = 0; N : oldCap = table.length int oldCap = (oldTab == null) ? 0 : oldTab.length; //临界值 int oldThr = threshold; //新的table容量即长度 . 新的临界值 int newCap, newThr = 0; //若table不为null if (oldCap > 0) { //若原有table容量已达到最大容量 : 对临界值进行赋值为 : 2 ^ 31 -1 ,此时不再进行扩容操作 . if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } //若没有达到最大容量 . 则newCap = oldCap * 2[即左移一位] //若此时newCap < 最大容量 且 oldCap >= 默认初始容量 : 1 << 16 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) //则针对临界值 * 2 newThr = oldThr << 1; //这时候若做批量插入 : 则容易造成map内存溢出 } //若table长度=0 判断原有临界值是否初始化赋值 else if (oldThr > 0) //此时 : 临界值不变 newCap = oldThr; //原本临界值没有赋值 : 即该map集合此时为空的集合 else { //数组长度为默认的初始化长度 1<< 16 newCap = DEFAULT_INITIAL_CAPACITY; //临界值为默认初始化长度*加载因子 . 即临界值 = 1 << 16 * 0.75f newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } //若此时 : 新的临界值为0 if (newThr == 0) { float ft = (float)newCap * loadFactor; //此时变更后的集合长度小于最大容量 且 此时数组容量 * 填充因子 也没有达到最大值 ? Y : 新的临界值为ft N : 1<<31 -1 newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } //给全局变量 : 临界值重新赋值 threshold = newThr; //根据得到的集合长度newCap 生成新的Node数组 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; //且赋值给全局变量table table = newTab; //若原有table不为null if (oldTab != null) { //根据原有数组长度进行循环 , 把旧数据拷贝到新的数组中 for (int j = 0; j < oldCap; ++j) { Node<K,V> e;//临时节点变量e if ((e = oldTab[j]) != null) {//若当前节点不为null : e进行初始化赋值 //给旧数组中对应的节点赋予null oldTab[j] = null; if (e.next == null)//针对数组中下标对应的当前链表[或红黑树] : 若节点e的下一个节点为null newTab[e.hash & (newCap - 1)] = e;//对新的数组对应的下标位置进行初始化赋值 else if (e instanceof TreeNode)//判断旧的节点是一个树节点,则对树进行操作 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);// else {//为链表结构 : 针对链表结构进行操作 //一堆临时变量 Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do {//循环当前链表. 通过e.next的方式 next = e.next; //e.hash & oldCap执行与运算符 .即为取模 : hash值模原本table的长度 . 用于确认下标 // 在计算机中&运算符速度较快 . 为0则证明有对应的下标 if ((e.hash & oldCap) == 0) { //若此时loTail仍为null if (loTail == null) loHead = e;//即链表结构头节点为e else //不然 : 把节点e存储为loTail的next节点 loTail.next = e; //loTail重新赋值为e : loTail = e; } else {//位运算得到不为0 .则在远table中无 [这两处的位运算的判断目的没搞很明白 , 有明白的指导一下?????] if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); //TODO: 把处理过的链表或者红黑树结构放入数组对应的下标处 if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; } /** * 将数组中对应的下标处的链表转为红黑树结构 * @param tab * @param hash */ final void treeifyBin(Node<K,V>[] tab, int hash) { int n, index; Node<K,V> e; if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) resize();//若数组此时为空 , 或者数组的长度小于64[树形化结构的最小值] . 扩容 else if ((e = tab[index = (n - 1) & hash]) != null) { //根据hash值得到数组中下标对应的节点对象 . 若不为null TreeNode<K,V> hd = null, tl = null; do { TreeNode<K,V> p = replacementTreeNode(e, null);//创建新的树节点p , 该操作即为下面的操作 // TreeNode<K,V> p = new TreeNode<K,V>(e.hash, e.key, e.value, null); //若树节点t1为null if (tl == null) hd = p;//则对hd进行初始化赋值p else {//不然则 : 对树节点的prev和next进行初始化赋值 p.prev = tl; tl.next = p;//TODO: 这个赋值 : 感觉没啥意义 , 有理解的希望分享下 } //t1重新初始化赋值 tl = p; } while ((e = e.next) != null); //若数组中下标对应的节点不为null if ((tab[index] = hd) != null) hd.treeify(tab);//则对链表进行树形化结构处理 } } /** * 批量插入 * @param m */ public void putAll(Map<? extends K, ? extends V> m) { putMapEntries(m, true); } /** * 根据K移除 * @param key * @return */ public V remove(Object key) { Node<K,V> e; return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value; } /** * 移除节点 : * @param hash key的hash值 * @param key 键 * @param value 值: 实际调用中无实际意义 * @param matchValue : 作用:区别remove(Key key)与remove(Key key,Value value) * 如果matchValue为false,remove(Key key)则删除与key值相等的节点,否则不删除 * @param movable :false : remove()中不移除其他节点 . 否则移除 * @return */ final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<K,V>[] tab; Node<K,V> p; int n, index; if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) {//数组不为空且key所对应的下标的节点对象不为null Node<K,V> node = null, e; K k; V v; //目标key的对比 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p;//初始化赋值 else if ((e = p.next) != null) {//e初始化赋值 ., 且节点p的next节点不为null if (p instanceof TreeNode)//若本身结构为树结构 node = ((TreeNode<K,V>)p).getTreeNode(hash, key);//从树种取出Node对象 else {//不为树结构 , 则循环链表判断key给node初始化赋值 do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } //若key存在 , 且删除与key相同的节点 if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { if (node instanceof TreeNode)//移除树节点 ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); else if (node == p) tab[index] = node.next;//替换节点对象 else p.next = node.next; ++modCount;//map的操作次数 . 乐观锁 : 一定程度上保证了线程安全 . --size;//size-1 //节点移除后的回调方法 afterNodeRemoval(node); return node; } } return null; } /** * 清空数组 */ public void clear() { Node<K,V>[] tab; modCount++; if ((tab = table) != null && size > 0) { size = 0; for (int i = 0; i < tab.length; ++i) tab[i] = null; } } /** * 是否存在value值 * @param value * @return */ public boolean containsValue(Object value) { Node<K,V>[] tab; V v; if ((tab = table) != null && size > 0) { for (int i = 0; i < tab.length; ++i) { for (Node<K,V> e = tab[i]; e != null; e = e.next) { if ((v = e.value) == value || (value != null && value.equals(v))) return true; } } } return false; } /** * 获取集合所有的key的集合 获取继承自abstractMap的参数 . * 若为null则 : 通过内部类KeySet 执行初始化赋值操作 * @return */ public Set<K> keySet() { Set<K> ks = keySet; if (ks == null) { ks = new KeySet(); keySet = ks; } return ks; } /** * 内部类KeySet : 即集合中键的集合 */ final class KeySet extends AbstractSet<K> { //数组/集合长度 public final int size() { return size; } //清空方法 public final void clear() { TestHashMap.this.clear(); } //迭代器:根据key public final Iterator<K> iterator() { return new KeyIterator(); } //判断是否存在 public final boolean contains(Object o) { return containsKey(o); } //根据key移除 , 并移除相同key的节点数据 public final boolean remove(Object key) { return removeNode(hash(key), key, null, false, true) != null; } //分割迭代器 public final Spliterator<K> spliterator() { return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0); } /** * 1.8新增迭代器 : 支持除map集合之外的其他集合类型 : list & set * action: 可以在action内部定义规则 : 同lamda表达式类似 * demo1: * map.forEach((key,value1)->{ * if(key != null && key > 1) { * System.out.println(key + ":" + value1); * } * }); * demo2 * Consumer<Map.Entry<Integer , String>> action = new Consumer<Map.Entry<Integer, String>>() { * @Override * public void accept(Map.Entry<Integer, String> integerStringEntry) { * if(integerStringEntry.getKey() != null && integerStringEntry.getKey() < 2) { * System.out.println(integerStringEntry.getKey() + " = " + integerStringEntry.getValue()); * } * } * }; * map.entrySet().forEach(action); * demo3 : * Consumer<Integer> action2 = new Consumer<Integer>() { * @Override * public void accept(Integer integer) { * if(integer != null && integer > 1) { * System.out.println(integer); * } * } * }; * map.keySet().forEach(action2); * * @param action */ public final void forEach(Consumer<? super K> action) { Node<K,V>[] tab; if (action == null) throw new NullPointerException(); if (size > 0 && (tab = table) != null) { int mc = modCount; for (int i = 0; i < tab.length; ++i) { for (Node<K,V> e = tab[i]; e != null; e = e.next) action.accept(e.key); } if (modCount != mc) throw new ConcurrentModificationException(); } } } /** * 获取所有的value值集合 * @return */ public Collection<V> values() { Collection<V> vs = values; if (vs == null) { vs = new Values(); values = vs; } return vs; } /** * AbstractCollection中的方法 */ final class Values extends AbstractCollection<V> { public final int size() { return size; } public final void clear() { HashMap.this.clear(); } public final Iterator<V> iterator() { return new ValueIterator(); } public final boolean contains(Object o) { return containsValue(o); } public final Spliterator<V> spliterator() { return new ValueSpliterator<K , V>(TestHashMap.this, 0, -1, 0, 0); } //迭代方法 public final void forEach(Consumer<? super V> action) { Node<K,V>[] tab; if (action == null) throw new NullPointerException(); if (size > 0 && (tab = table) != null) { int mc = modCount; for (int i = 0; i < tab.length; ++i) { for (Node<K,V> e = tab[i]; e != null; e = e.next) action.accept(e.value); } if (modCount != mc) throw new ConcurrentModificationException(); } } } /** * key-value 映射 * @return */ public Set<Map.Entry<K,V>> entrySet() { Set<Map.Entry<K,V>> es; return (es = entrySet) == null ? (entrySet = new EntrySet()) : es; } /** * key-value映射时初始化的对象 */ final class EntrySet extends AbstractSet<Map.Entry<K,V>> { public final int size() { return size; } public final void clear() { TestHashMap.this.clear(); } //迭代器 : 自定义迭代规则 : 获取节点中的数据 public final Iterator<Map.Entry<K,V>> iterator() { return new EntryIterator(); } public final boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<?,?> e = (Map.Entry<?,?>) o; Object key = e.getKey(); Node<K,V> candidate = getNode(hash(key), key); return candidate != null && candidate.equals(e); } public final boolean remove(Object o) { if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>) o; Object key = e.getKey(); Object value = e.getValue(); return removeNode(hash(key), key, value, true, true) != null; } return false; } public final Spliterator<Map.Entry<K,V>> spliterator() { return new EntrySpliterator<>(TestHashMap.this, 0, -1, 0, 0); } public final void forEach(Consumer<? super Map.Entry<K,V>> action) { Node<K,V>[] tab; if (action == null) throw new NullPointerException(); if (size > 0 && (tab = table) != null) { int mc = modCount; for (int i = 0; i < tab.length; ++i) { for (Node<K,V> e = tab[i]; e != null; e = e.next) action.accept(e); } if (modCount != mc) throw new ConcurrentModificationException(); } } } /** * 重写的方法1.7之前也存在 : 若key存在 : 则返回对应value . 不存在 : 返回defaultValue * @param key * @param defaultValue * @return */ @Override public V getOrDefault(Object key, V defaultValue) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? defaultValue : e.value; } /** * 如果匹配不到则增加key-value,返回null,如果匹配到Node,如果oldValue不等于null则不进行value覆盖,返回oldValue * @param key * @param value * @return */ @Override public V putIfAbsent(K key, V value) { return putVal(hash(key), key, value, true, true); } /** * 根据key匹配node,如果value也相同则删除 * @param key * @param value * @return */ @Override public boolean remove(Object key, Object value) { return removeNode(hash(key), key, value, true, true) != null; } /** * 替换 : 当key对应的value相同时才执行成功 * @param key * @param oldValue * @param newValue * @return */ @Override public boolean replace(K key, V oldValue, V newValue) { Node<K,V> e; V v; if ((e = getNode(hash(key), key)) != null && ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) { e.value = newValue; afterNodeAccess(e); return true; } return false; } /** * 直接进行替换 : key不存在 : 返回false . 存在 : 直接替换 * @param key * @param value * @return */ @Override public V replace(K key, V value) { Node<K,V> e; if ((e = getNode(hash(key), key)) != null) { V oldValue = e.value; e.value = value; afterNodeAccess(e); return oldValue; } return null; } /** * 根据key做匹配Node,(匹配不到则新建然后重排)如果Node有value,则直接返回oldValue, * 如果没有value则根据Function接口的apply方法获取value,返回value。 * map.computeIfAbsent("key", k -> new Object()); * @param key * @param mappingFunction * @return */ @Override public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { if (mappingFunction == null) throw new NullPointerException(); int hash = hash(key); Node<K,V>[] tab; Node<K,V> first; int n, i; int binCount = 0; TreeNode<K,V> t = null; Node<K,V> old = null; if (size > threshold || (tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((first = tab[i = (n - 1) & hash]) != null) { if (first instanceof TreeNode) //如果已经转为树,按照树的规则进行处理 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key); else { Node<K,V> e = first; K k; //查找整个链表,找到对应的key do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { old = e; break; } ++binCount; } while ((e = e.next) != null); } V oldValue; if (old != null && (oldValue = old.value) != null) { afterNodeAccess(old); return oldValue; } } //根据重写逻辑计算返回value V v = mappingFunction.apply(key); if (v == null) { return null; } else if (old != null) { old.value = v; afterNodeAccess(old); return v; } else if (t != null) t.putTreeVal(this, tab, hash, key, v); else { //如果匹配不到则table加入数据 tab[i] = newNode(hash, key, v, first); if (binCount >= TREEIFY_THRESHOLD - 1) treeifyBin(tab, hash); } ++modCount; ++size; afterNodeInsertion(true); return v; } /** * /V computeIfPresent(K key,BiFunction remappingFunction): * 根据key做匹配,如果匹配不上则返回null, * 匹配上根据BiFunction的apply方法获取value,返回value。 * BiFunction接口的apply的入参为key、oldValue, * 调用computeIfPresent时重写Function接口可以根据key和oldValue进行逻辑处理, * apply的返回值如果为null则删除该节点,否则即为要存储的value。 * @param key * @param remappingFunction * @return */ public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { if (remappingFunction == null) throw new NullPointerException(); Node<K,V> e; V oldValue; int hash = hash(key); if ((e = getNode(hash, key)) != null && (oldValue = e.value) != null) { //使用key和原value作为入参 V v = remappingFunction.apply(key, oldValue); if (v != null) { e.value = v; afterNodeAccess(e); return v; } else //apply的返回值如果为null则删除该节点, removeNode(hash, key, null, false, true); } return null; } /** * 根据key做匹配,根据BiFunction的apply返回做存储的value。 * 匹配到Node做value替换,匹配不到新增node。 * apply的返回值如果为null则删除该节点,否则即为要存储的value。 * @param key * @param remappingFunction * @return */ @Override public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { if (remappingFunction == null) throw new NullPointerException(); int hash = hash(key); Node<K,V>[] tab; Node<K,V> first; int n, i; int binCount = 0; TreeNode<K,V> t = null; Node<K,V> old = null; if (size > threshold || (tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((first = tab[i = (n - 1) & hash]) != null) { if (first instanceof TreeNode) old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key); else { Node<K,V> e = first; K k; do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { old = e; break; } ++binCount; } while ((e = e.next) != null); } } V oldValue = (old == null) ? null : old.value; V v = remappingFunction.apply(key, oldValue); if (old != null) { if (v != null) { old.value = v; afterNodeAccess(old); } else removeNode(hash, key, null, false, true); } else if (v != null) { if (t != null) t.putTreeVal(this, tab, hash, key, v); else { tab[i] = newNode(hash, key, v, first); if (binCount >= TREEIFY_THRESHOLD - 1) treeifyBin(tab, hash); } ++modCount; ++size; afterNodeInsertion(true); } return v; } /** * 功能大部分与compute相同,不同之处在于BiFunction中apply的参数, * 入参为oldValue、value,调用merge时根据两个value进行逻辑处理并返回value。 * @param key * @param value * @param remappingFunction * @return */ @Override public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) { if (value == null) throw new NullPointerException(); if (remappingFunction == null) throw new NullPointerException(); int hash = hash(key); Node<K,V>[] tab; Node<K,V> first; int n, i; int binCount = 0; TreeNode<K,V> t = null; Node<K,V> old = null; if (size > threshold || (tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((first = tab[i = (n - 1) & hash]) != null) { if (first instanceof TreeNode) //若为树结构 , 获取旧的节点 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key); else { Node<K,V> e = first; K k; //循环链表获取key do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { old = e; break; } ++binCount; } while ((e = e.next) != null); } } if (old != null) { V v; //旧节点value不为null,则根据apply方法得到新的value值 , 为null , 直接赋值 if (old.value != null) v = remappingFunction.apply(old.value, value); else v = value; //此时value不为null . 对old节点value做覆盖 if (v != null) { old.value = v; afterNodeAccess(old); } else //若此时old节点value仍为null , 则删除该节点 . 即当 : oldvalue和传入的value都为null时 . 删除节点 removeNode(hash, key, null, false, true); return v; } //入参value不为null if (value != null) { if (t != null) //且为树结构时 . 替换value值 t.putTreeVal(this, tab, hash, key, value); else { //为链表结构时 , 创建新的节点对象 tab[i] = newNode(hash, key, value, first); //若此时的链表数据已达到链表转树结构的阈值 , 转为树结构 if (binCount >= TREEIFY_THRESHOLD - 1) treeifyBin(tab, hash); } ++modCount; ++size; afterNodeInsertion(true); } return value; } //迭代 @Override public void forEach(BiConsumer<? super K, ? super V> action) { Node<K,V>[] tab; if (action == null) throw new NullPointerException(); if (size > 0 && (tab = table) != null) { int mc = modCount; for (int i = 0; i < tab.length; ++i) { for (Node<K,V> e = tab[i]; e != null; e = e.next) action.accept(e.key, e.value); } if (modCount != mc) throw new ConcurrentModificationException(); } } //调用此方法时重写BiFunction的Object apply(Object o, Object o2)方法, // 其中o为key,o2为value,根据重写方法逻辑进行重新赋值。 @Override public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { Node<K,V>[] tab; if (function == null) throw new NullPointerException(); if (size > 0 && (tab = table) != null) { int mc = modCount; for (int i = 0; i < tab.length; ++i) { for (Node<K,V> e = tab[i]; e != null; e = e.next) { e.value = function.apply(e.key, e.value); } } if (modCount != mc) throw new ConcurrentModificationException(); } } /* ------------------------------------------------------------ */ // Cloning and serialization /** * 实现cloneable接口,重排map结构 , 目前不可调用 * @return */ @SuppressWarnings("unchecked") @Override public Object clone() { HashMap<K,V> result; try { result = (HashMap<K,V>)super.clone(); } catch (CloneNotSupportedException e) { // this shouldn‘t happen, since we are Cloneable throw new InternalError(e); } result.reinitialize(); result.putMapEntries(this, false); return result; } /** * 这些方法只在序列化map集合时启用 : 初始化填充引起 * @return */ final float loadFactor() { return loadFactor; } //初始化容量值:即数组长度 final int capacity() { return (table != null) ? table.length : (threshold > 0) ? threshold : DEFAULT_INITIAL_CAPACITY; } /** * Save the state of the <tt>HashMap</tt> instance to a stream (i.e., * serialize it). * * @serialData The <i>capacity</i> of the HashMap (the length of the * bucket array) is emitted (int), followed by the * <i>size</i> (an int, the number of key-value * mappings), followed by the key (Object) and value (Object) * for each key-value mapping. The key-value mappings are * emitted in no particular order. */ private void writeObject(java.io.ObjectOutputStream s) throws IOException { int buckets = capacity(); // Write out the threshold, loadfactor, and any hidden stuff s.defaultWriteObject(); s.writeInt(buckets); s.writeInt(size); internalWriteEntries(s); } /** * Reconstitute the {@code HashMap} instance from a stream (i.e., * deserialize it). */ private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { // Read in the threshold (ignored), loadfactor, and any hidden stuff s.defaultReadObject(); reinitialize(); if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new InvalidObjectException("Illegal load factor: " + loadFactor); s.readInt(); // Read and ignore number of buckets int mappings = s.readInt(); // Read number of mappings (size) if (mappings < 0) throw new InvalidObjectException("Illegal mappings count: " + mappings); else if (mappings > 0) { // (if zero, use defaults) // Size the table using given load factor only if within // range of 0.25...4.0 float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f); float fc = (float)mappings / lf + 1.0f; int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ? DEFAULT_INITIAL_CAPACITY : (fc >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : tableSizeFor((int)fc)); float ft = (float)cap * lf; threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ? (int)ft : Integer.MAX_VALUE); @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] tab = (Node<K,V>[])new Node[cap]; table = tab; // Read the keys and values, and put the mappings in the HashMap for (int i = 0; i < mappings; i++) { @SuppressWarnings("unchecked") K key = (K) s.readObject(); @SuppressWarnings("unchecked") V value = (V) s.readObject(); putVal(hash(key), key, value, false, false); } } } /* ------------------------------------------------------------ */ // iterators abstract class HashIterator { Node<K,V> next; // 下一个节点 Node<K,V> current; // 当前节点 int expectedModCount; // 修改次数 : 避免迭代时有其他线程修改了此map集合数据 int index; //当前插槽 /** * 构造器 */ HashIterator() { expectedModCount = modCount; Node<K,V>[] t = table; current = next = null; index = 0; if (t != null && size > 0) { // advance to first entry do {} while (index < t.length && (next = t[index++]) == null); } } /** * 是否有下一个 * @return */ public final boolean hasNext() { return next != null; } /** * 下一个节点 * @return */ final Node<K,V> nextNode() { Node<K,V>[] t; Node<K,V> e = next; if (modCount != expectedModCount) throw new ConcurrentModificationException(); if (e == null) throw new NoSuchElementException(); if ((next = (current = e).next) == null && (t = table) != null) { do {} while (index < t.length && (next = t[index++]) == null); } return e; } public final void remove() { Node<K,V> p = current; if (p == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); current = null; K key = p.key; removeNode(hash(key), key, null, false, false); expectedModCount = modCount; } } final class KeyIterator extends HashIterator implements Iterator<K> { public final K next() { return nextNode().key; } } final class ValueIterator extends HashIterator implements Iterator<V> { public final V next() { return nextNode().value; } } final class EntryIterator extends HashIterator implements Iterator<Map.Entry<K,V>> { public final Map.Entry<K,V> next() { return nextNode(); } }
不成熟之处 , 请多指导 .
标签:最小 stream 若是 class 乐观锁 node节点 实现 内存 集合类
原文地址:https://www.cnblogs.com/kxkl123/p/11192460.html