码迷,mamicode.com
首页 > 其他好文 > 详细

Redis相关使用总结(二)

时间:2019-07-17 00:41:27      阅读:63      评论:0      收藏:0      [点我收藏+]

标签:失败   线程   命令   部分   级别   语言   开发   自己的   异常   

6、redis和数据库双写一致性问题

 

分析:一致性问题是分布式常见问题,还可以再分为最终一致性和强一致性。数据库和缓存双写,就必然会存在不一致的问题。答这个问题,先明白一个前提。就是如果对数据有强一致性要求,不能放缓存。我们所做的一切,只能保证最终一致性。另外,我们所做的方案其实从根本上来说,只能说降低不一致发生的概率,无法完全避免。因此,有强一致性要求的数据,不能放缓存。

 

首先,采取正确更新策略,先更新数据库,再删缓存。其次,因为可能存在删除缓存失败的问题,提供一个补偿措施即可,例如利用消息队列。

 

7、如何应对缓存穿透和缓存雪崩问题


分析:这两个问题,说句实在话,一般中小型传统软件企业,很难碰到这个问题。如果有大并发的项目,流量有几百万左右。这两个问题一定要深刻考虑。

 

回答:如下所示

 

缓存穿透,即黑客故意去请求缓存中不存在的数据,导致所有的请求都怼到数据库上,从而数据库连接异常。

 

解决方案:

 

(一)利用互斥锁,缓存失效的时候,先去获得锁,得到锁了,再去请求数据库。没得到锁,则休眠一段时间重试

 

(二)采用异步更新策略,无论key是否取到值,都直接返回。value值中维护一个缓存失效时间,缓存如果过期,异步起一个线程去读数据库,更新缓存。需要做缓存预热(项目启动前,先加载缓存)操作。

 

(三)提供一个能迅速判断请求是否有效的拦截机制,比如,利用布隆过滤器,内部维护一系列合法有效的key。迅速判断出,请求所携带的Key是否合法有效。如果不合法,则直接返回。

 

缓存雪崩,即缓存同一时间大面积的失效,这个时候又来了一波请求,结果请求都怼到数据库上,从而导致数据库连接异常。

 

解决方案:

 

(一)给缓存的失效时间,加上一个随机值,避免集体失效。

 

(二)使用互斥锁,但是该方案吞吐量明显下降了。

 

(三)双缓存。我们有两个缓存,缓存A和缓存B。缓存A的失效时间为20分钟,缓存B不设失效时间。自己做缓存预热操作。然后细分以下几个小点

 

I 从缓存A读数据库,有则直接返回

II A没有数据,直接从B读数据,直接返回,并且异步启动一个更新线程。

III 更新线程同时更新缓存A和缓存B。

 

8、如何解决redis的并发竞争key问题

(1)如果对这个key操作,不要求顺序


这种情况下,准备一个分布式锁,大家去抢锁,抢到锁就做set操作即可,比较简单。


(2)如果对这个key操作,要求顺序


假设有一个key1,系统A需要将key1设置为valueA,系统B需要将key1设置为valueB,系统C需要将key1设置为valueC.


期望按照key1的value值按照 valueA–>valueB–>valueC的顺序变化。这种时候我们在数据写入数据库的时候,需要保存一个时间戳。假设时间戳如下

 

系统A key 1 {valueA 3:00}

系统B key 1 {valueB 3:05}

系统C key 1 {valueC 3:10}

 

那么,假设这会系统B先抢到锁,将key1设置为{valueB 3:05}。接下来系统A抢到锁,发现自己的valueA的时间戳早于缓存中的时间戳,那就不做set操作了。以此类推。

 

其他方法,比如利用队列,将set方法变成串行访问也可以。总之,灵活变通。

9、Redis性能瓶颈问题


Redis性能瓶颈一般体现在两个地方

1.机器内存大小,因为redis的数据放在内存里,所以存放数据量的多少取决于内存的多少

2.网络带宽

Redis客户端执行一条命令分为如下四个过程:

1)发送命令

2)命令排队

3)命令执行

4)返回结果

其中1)+4)称为Round Trip Time(RTT,往返时间)。

Redis的客户端和服务端可能部署在不同的机器上。例如客户端在北京,Redis服务端在上海,两地直线距离约为1300公里,那么1次RTT时间=1300×2/(300000×2/3)=13毫秒(光在真空中传输速度为每秒30万公里,这里假设光纤为光速的2/3),那么客户端在1秒内大约只能执行80次左右的命令,这个和Redis的高并发高吞吐特性背道而驰

所以要么就在全国各地都有自己的Redis服务器,然后就近访问,要么就使用Pipeline

Pipeline(流水线)机制能改善上面这类问题,它能将一组Redis命令进行组装,通过一次RTT传输给Redis,再将这组Redis命令的执行结果按顺序192返回给客户端,下图为没有使用Pipeline执行了n条命令,整个过程需要n次RTT

 

没有Pipeline执行n次命令模型

Pipeline并不是什么新的技术或机制,很多技术上都使用过。而且RTT在不同网络环境下会有不同,例如同机房和同机器会比较快,跨机房跨地区会比较慢。Redis命令真正执行的时间通常在微秒级别,所以才会有Redis性能瓶颈是网络这样的说法。

但大部分开发人员更倾向于使用高级语言客户端中的Pipeline,目前大部分Redis客户端都支持Pipeline

Redis相关使用总结(二)

标签:失败   线程   命令   部分   级别   语言   开发   自己的   异常   

原文地址:https://www.cnblogs.com/ragnaros/p/11198270.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!