题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2489
3 2 30 20 10 0 6 2 6 0 3 2 3 0 2 2 1 1 0 2 2 0 0 0
1 3 1 2
题意:
给出n个点,要从中选出m个点,要求选出的这m个点的所有边的边权值/点权值要最小!
并要输出所选的这m个点,如果有多种选择方法,那么就输出第一个点小的方案,如果第一个点相同就输出第二个点小的,一次类推!
PS:
由于这题的n比较小,只有15,所以可以先dfs枚举出所选择的点,然后在用最小生成树Prim算出最小的边权值的和;
代码如下:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
#define INF 1e18;
const double eps = 1e-9;
const int maxn = 17;
int n, m;
int e_val[maxn][maxn];
int node[maxn];
int ansn[maxn];//记录最终选得是哪些点
int tt[maxn];//记录中间过程选得是哪些点
int vis[maxn];
int low[maxn];
double minn;
int Prim(int s)
{
int sum=0;
memset(vis,0,sizeof(vis));
for(int i = 1; i <= m; i++)
{
low[tt[i]] = e_val[s][tt[i]];
}
vis[s] = 1;
low[s] = 0;
int pos = s;
for(int i = 1; i < m; i++)
{
int min_t = INF;
for(int j = 1; j <= m; j++)
{
if(!vis[tt[j]] && min_t > low[tt[j]])
{
min_t = low[tt[j]];
pos = tt[j];
}
}
vis[pos] = 1;
sum += min_t;
for(int j = 1; j <= m; j++)
{
if(!vis[tt[j]] && e_val[pos][tt[j]] < low[tt[j]])
low[tt[j]]=e_val[pos][tt[j]];
}
}
return sum;
}
void DFS(int n_pre, int k)
{
if(k == m)
{
double n_sum = 0;
for(int i = 1; i <= m ; i++)
{
n_sum+=node[tt[i]];
}
double e_ans = 0;
e_ans = Prim(tt[1]);
double ans = e_ans/(n_sum*1.0);
//if(ans < minn)
if(ans - minn < -(eps))
{
minn = ans;
for(int i = 1; i <= m; i++)
{
ansn[i] = tt[i];
}
}
return ;
}
for(int i = n_pre+1; i <= n; i++)
{
tt[k+1] = i;
DFS(i,k+1);
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
if(n==0 && m==0)
break;
minn = INF;
for(int i = 1; i <= n; i++)
{
scanf("%d",&node[i]);
}
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
scanf("%d",&e_val[i][j]);
}
}
for(int i = 1; i <= n; i++)
{
tt[1] = i;
DFS(i, 1);
}
for(int i = 1; i < m; i++)
{
printf("%d ",ansn[i]);
}
printf("%d\n",ansn[m]);
}
return 0;
}
HDU 2489 Minimal Ratio Tree (dfs+Prim最小生成树)
原文地址:http://blog.csdn.net/u012860063/article/details/40402661