标签:for const pop lse signed main int stl https
我们知道单独一个强连通分量中的所有点是满足题目要求的
但如果它连出去到了其他点那里,要么成为新的强连通分量,要么失去原有的符合题目要求的性质
所以只需tarjan缩点求出所有强连通分量,再O(E)枚举所有边,是否会成为连接一个分量与另一个分量的边——即一条出度——即可
如果一个分量没有出度,那么他中间的所有点都是符合题目要求的点
(因为快读快输加了太长所以就不贴了)
const int N=5005,M=N*N>>1;
int h[N],en,n,m,dfn[N],out[N],bel[N],low[N],num,cnt;
stack<int> st;
struct edge{int n,u,v;}e[M]; //前向星存边
inline void add(const int &x,const int &y){e[++en]=(edge){h[x],x,y},h[x]=en;}
inline void tarjan(int x){ //一个tarjan缩点STL栈模板
st.push(x);
dfn[x]=low[x]=++num;
for(int i=h[x];i;i=e[i].n){
int y=e[i].v;
if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
}
else if(!bel[y])
low[x]=min(low[x],dfn[y]);
}
if(low[x]==dfn[x]){
cnt++;
int TOP;
do{
TOP=st.top();
st.pop();
bel[TOP]=cnt;
}while(TOP!=x);
}
}
signed main(){
read(n);
while(n){
en=num=cnt=0;
memset(h,0,sizeof h);
memset(dfn,0,sizeof dfn);
memset(out,0,sizeof out);
memset(bel,0,sizeof bel);
memset(low,0,sizeof low);
read(m);
while(m--){
int x,y;
read(x),read(y);
add(x,y);
}
for(int i=1;i<=n;i++) if(!dfn[i]) //跑缩点
tarjan(i);
for(int i=1,u,v;i<=en;i++){
u=e[i].u,v=e[i].v;
if(bel[u]!=bel[v]) out[bel[u]]++; //判断每条边的起点终点是否在同一强连通分量中,如果不是,则起点所在强连通分量出度加1
}
for(int i=1;i<=n;i++) if(!out[bel[i]]) //如果点i所在强连通分量没有出度则满足要求,输出
Write(i,' ');
printf("\n"); //统一换行
read(n);
}
}
POJ2533&&SP1799 The Bottom of a Graph(tarjan+缩点+强连通分量)
标签:for const pop lse signed main int stl https
原文地址:https://www.cnblogs.com/think-twice/p/11219131.html