标签:注意 答案 inline 现在 blog 情况 ids cal 指正
也许更好的阅读体验
\(\mathcal{Description}\)
有\(n\)个格子,每次等概率随机给一个格子染色,问涂\(m\)次后期望有多少格子被染色了
\(\mathcal{Solution}\)
设\(f[i]\)表示涂\(i\)次后期望有多少格子被染色了
现在进行第\(i\)次染色,仍然有两种情况
需要注意的是,无论是以上哪种,都已经有\(f[i-1]\)个格子被染色了
所以有
\(f[i]=\frac{f[i-1]}{n}·0+\frac{n-f[i-1]}{n}·1+f[i-1]\)
将其化简
\(f[i]=\frac{n-f[i-1]}{n}+f[i-1]=\frac{n-1}{n}f[i-1]+1\)
此时该式就是一个等差数列套等比数列
求其通项公式得\(f_m=(\frac{n-1}{n})^m+m\)
初值\(f[0]=0\)答案为\(f[m]\)
应正向循环
如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧
标签:注意 答案 inline 现在 blog 情况 ids cal 指正
原文地址:https://www.cnblogs.com/Morning-Glory/p/11222404.html