码迷,mamicode.com
首页 > 其他好文 > 详细

Binary Tree和Binary Search Tree

时间:2019-07-22 09:49:33      阅读:78      评论:0      收藏:0      [点我收藏+]

标签:null   不能   math   题型   boolean   完全   nod   this   span   

Binary Tree
Definition: at most two children node.

Binary Tree Example:

                10 ==root

               /      \

              13          15  cur

             /   \     /  \

            21  72      12    2

            /  \

          null   null

class TreeNode{

  int value;

  TreeNode * left;

  TreeNode * right;

  TreeNode * parent //point to this node‘s parent node.

}
面试常见题型:

基本知识点1: tree traverse

1. pre-order.

2.in-order.

3.post-order.

关键点:base case通常就是叶子节点下面的空节点。

 

Balanced binary tree:

对于树的任意一个节点,左子树和右子树的高度差不超过1

 

Complete binary tree(完全二叉树)

底层是一个数组,数组内部的数字必须是连续的,不能有空余的内存空间。

 

Binary Search Tree(二叉查找树)

          10

         /      \

        5        15

       /   \       /     \

      2     7      12     20

注意:对于根节点10,必须整个左子树(左子树上的所有节点)都必须比10小,整个右子树(右子树上的所有节点)必须比10大。

同时binary search tree不允许有重复的node;

Binary tree 往往是最常见的和recursion结合最紧密的面试题目类型。

理由:

1.每层的node所具备的性质,传递的值和下一层的性质往往一致,比较容易定义recursive rule。

2.base case: null pointer under the leaf node.

3.Example1:int getHeight(Node root)

4.Example2:统计tree里面有多少个node。

 

常见面试题型:

How to get integer value(height) for a problem with size = n? But how?

GetHeight of a binary tree?

public int getHeight(TreeNode root){

  if(root == null){

  return 0;

}  

  int left = getHeight(root.left);

  int right = getHeight(root.right);

  return 1 + Math.max(left,right);

 

}

Time = O(n);

space = O(n) == O(height);

 

---------------------------------------------------------------------------------------------------------------------------

Q3:How to determine whether a binary tree is a balanced binary tree?

public boolean isBalanced(TreeNode tree){

    if(root == null){

      return true;

}  

    int left = getHeight(root.left);

    int right = getHeight(root.right);

    if(Math.abs(left - right) > 1){

      return false;

  }  

     return  isBalanced(root.left) && isBalanced(root.right);

}

时间复杂度分析:

            isBalanced(n/2 + n/2)

             /      \

          getHeight  getHeight

          (n/4 + n/4)  (n/4 + n/4)

因为是一个平衡二叉树所以:层数logn   So: Time : O(nlogn)

---------------------------------------------------------------------------------------------------------------------------

Q4:怎么判断一颗二叉树左右两边是不是对称的?

          10

         5a  |   5b

       1a   3a  |    3b    1b

    2a4a 6a8a   |    8b6b  4b2b

 public boolean isSymmetric(TreeNode noe,TreeNode two){

    if(one == null && two == null){

      return true;

    }
    if(one ==null || two == null){

      return false;

}

    if(one.value == two.value){

      return false;

}

    return isSymmetric(one.left,two.right) && isSymmetric(one.right,one.left);

}

Time = O(n);

space = O(n) -> O(height)   if the tree is balaced -> O(logn)

---------------------------------------------------------------------------------------------------------------------------

Q5:

 

 

    

 

Binary Tree和Binary Search Tree

标签:null   不能   math   题型   boolean   完全   nod   this   span   

原文地址:https://www.cnblogs.com/xujiangxi/p/11223761.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!