码迷,mamicode.com
首页 > 其他好文 > 详细

吴恩达《机器学习》课程总结(3)_线性代数回顾

时间:2019-07-25 21:50:24      阅读:92      评论:0      收藏:0      [点我收藏+]

标签:线性   回顾   课程   图片   课程总结   multi   结果   har   元素   

学过线性代数的人,这节课内容完全没必要看

Q1矩阵和向量

几行几列即为矩阵。Aij表示第i行第j列。

技术图片

 

只有一行或者一列的称为向量,向量是一种特殊矩阵。一般向量指的是列向量。

技术图片

 

Q2加法和标量乘法

加法:元素对应相加。

技术图片

 

标量乘法:标量和矩阵每一个元素相乘。

 技术图片

 

Q3矩阵向量乘法

技术图片

Q4矩阵乘法

要求:第一个矩阵的列数等于第二个矩阵的行数,如m x n矩阵与nx 1矩阵相乘,结果为第一个矩阵的行数乘以第二个矩阵的列数。

结果Cij是第一个矩阵第i行和第二个矩阵第j列对应元素相乘求和的值。

技术图片

Q5矩阵乘法的性质

不满足交换律:AxB != B x A。

满足结合律:(A x B) x C=A x (B x C)。

单位矩阵I:是对角线为1,其他都为零的方阵。任何矩阵于单位矩阵相乘,矩阵保持不变。

Q6逆、转置

如果矩阵A的逆矩阵存在,则AA-1=A-1A=I。

如果A的转置矩阵是B,则A矩阵第i行第j列元素与B矩阵第j行第i列元素相等。记A=B。

技术图片

转置矩阵的一些性质:

(A±B)T=(A±B)。

(AxB)T=Bx A

(AT=A。

(KA)=KAT

英语名词

 

linear algebra   ---线性代数
matrix element	---矩阵元素
3 by 2 matrix   ---3*2矩阵
identity matrix	---单位矩阵
associative property	---结合律
inverse	---倒数,逆
square matrix 方阵
notation	---符号
hypothesis   ---假设
multivariate linear regression 多元线性回归

 

  

 

吴恩达《机器学习》课程总结(3)_线性代数回顾

标签:线性   回顾   课程   图片   课程总结   multi   结果   har   元素   

原文地址:https://www.cnblogs.com/henuliulei/p/11247083.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!