标签:int 返回 一个 number 删除 series rop 填充 import
在pandas中有个另类的存在就是nan,解释是:not a number,不是一个数字,但是它的类型确是一个float类型。numpy中也存在关于nan的方法,如:np.nan
对于pandas中nan的处理,简单的说有以下几个方法。
查看是否是nan, s1.isnull() 和 s1.notnull()
丢弃有nan的索引项,s1.dropna()
将nan填充为其他值,df2.fillna()
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
n = np.nan
print(type(n)) # <class 'float'>
m = 1
print(n+m) # nan 任何数字和nan进行计算,都是nan
# nan in series
s1 = Series([1, 2, np.nan, 3, 4], index=['A', 'B', 'C', 'D', 'E'])
print(s1)
'''
A 1.0
B 2.0
C NaN
D 3.0
E 4.0
dtype: float64
'''
print(s1.isnull()) # 返回 bool值,是 nan 的话,返回true
'''
A False
B False
C True
D False
E False
dtype: bool
'''
print(s1.notnull()) # 非 nan , 返回true
'''
A True
B True
C False
D True
E True
dtype: bool
'''
# 去掉 有 nan 的索引项
print(s1.dropna())
'''
A 1.0
B 2.0
D 3.0
E 4.0
dtype: float64
'''
# nan in dataframe
df = DataFrame([[1, 2, 3], [np.nan, 5, 6], [7, np.nan, 9], [np.nan, np.nan, np.nan]])
print(df)
'''
0 1 2
0 1.0 2.0 3.0
1 NaN 5.0 6.0
2 7.0 NaN 9.0
3 NaN NaN NaN
'''
print(df.isnull()) # df.notnull() 同理
'''
0 1 2
0 False False False
1 True False False
2 False True False
3 True True True
'''
# 去掉 所有 有 nan 的 行, axis = 0 表示 行方向
df1 = df.dropna(axis=0)
print(df1)
'''
0 1 2
0 1.0 2.0 3.0
'''
# 表示在 列 的方向上。
df1 = df.dropna(axis=1)
print(df1)
'''
mpty DataFrame
Columns: []
Index: [0, 1, 2, 3]
'''
# any 只要有 nan 就会删掉。 all 是必须全是nan才删除
df1 = df.dropna(axis=0, how='any')
print(df1)
'''
0 1 2
0 1.0 2.0 3.0
'''
# any 只要有 nan 就会删掉。 all 全部是nan,才会删除
df1 = df.dropna(axis=0, how='all')
print(df1)
'''
0 1 2
0 1.0 2.0 3.0
1 NaN 5.0 6.0
2 7.0 NaN 9.0
'''
df2 = DataFrame([[1, 2, 3, np.nan], [2, np.nan, 5, 6], [np.nan, 7, np.nan, 9], [1, np.nan, np.nan, np.nan]])
print(df2)
'''
0 1 2 3
0 1.0 2.0 3.0 NaN
1 2.0 NaN 5.0 6.0
2 NaN 7.0 NaN 9.0
3 1.0 NaN NaN NaN
'''
print(df2.dropna(thresh=None))
'''
Empty DataFrame
Columns: [0, 1, 2, 3]
Index: []
'''
print(df2.dropna(thresh=2)) # thresh 表示一个范围,如:每一行的nan > 2,就删除
'''
0 1 2 3
0 1.0 2.0 3.0 NaN
1 2.0 NaN 5.0 6.0
2 NaN 7.0 NaN 9.0
'''
# 将nan进行填充
print(df2.fillna(value=1))
'''
0 1 2 3
0 1.0 2.0 3.0 1.0
1 2.0 1.0 5.0 6.0
2 1.0 7.0 1.0 9.0
3 1.0 1.0 1.0 1.0
'''
# 可以 为指定列 填充不同的 数值
print(df2.fillna(value={0: 0, 1: 1, 2: 2, 3: 3})) # 指定每一列 填充的数值
'''
0 1 2 3
0 1.0 2.0 3.0 3.0
1 2.0 1.0 5.0 6.0
2 0.0 7.0 2.0 9.0
3 1.0 1.0 2.0 3.0
'''
# 以下两个例子需要说明的是:对dataframe进行dropna,原来的dataframe不会改变
print(df1.dropna())
'''
0 1 2
0 1.0 2.0 3.0
'''
print(df1)
'''
0 1 2
0 1.0 2.0 3.0
1 NaN 5.0 6.0
2 7.0 NaN 9.0
'''
标签:int 返回 一个 number 删除 series rop 填充 import
原文地址:https://www.cnblogs.com/wenqiangit/p/11252817.html