标签:ref const sig cto iss double ++i 平面 uniq
题目链接:
计算几何太duliu了~
题目大意:空间中有一个物体,上空有\(3\)个摄像头拍摄地面,求摄像头公共盲区面积大小
首先求出每一个摄像头的盲区:
将物体的每一个点投影到地面再求凸包即可。
然后将\(3\)个凸包的每一条边都拿来一起做一次半平面交,求出公共盲区
最后三角剖分求面积就好了。
#include <cmath>
#include <cstdio>
#include <vector>
#include <algorithm>
const double Eps=1e-8;
inline double Abs(double x){return x>=0?x:-x;}
inline int Sign(double x){return Abs(x)<Eps?0:(x>0?1:-1);}
typedef struct Point
{
double x,y;
inline Point operator+(Point o){return (Point){x+o.x,y+o.y};}
inline Point operator-(Point o){return (Point){x-o.x,y-o.y};}
inline Point operator*(double k){return (Point){x*k,y*k};}
inline bool operator<(Point o){return Sign(x-o.x)?x<o.x:y<o.y;}
inline bool operator==(Point o){return !Sign(x-o.x)&&!Sign(y-o.y);}
}Vector;
inline double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}
inline double Cross(Vector A,Vector B){return A.x*B.y-A.y*B.x;}
struct Point_3D{double x,y,z;};
inline Point Projection(Point Light,Point_3D Object)//Object在Light下的投影
{return Light+((Vector){Object.x,Object.y}-Light)*(100/(100-Object.z));}
struct Line
{
Point p;Vector v;double Ang;Line(){}
Line(Point ps,Vector vs):p(ps),v(vs){Ang=atan2(v.y,v.x);}
inline bool operator<(Line o){return Ang<o.Ang;}
};
Point_3D Mac[105];//机器坐标
Point Camera[5];//摄像头坐标
Point S[105];
std::vector<Point> Convex_Hull(std::vector<Point> p)//求凸包
{
std::vector<Point> Ans;
std::sort(p.begin(),p.end());
int n=std::unique(p.begin(),p.end())-p.begin(),Sn=0;
for(int i=0;i<=n-1;S[++Sn]=p[i++])
while(Sn>=2&&Sign(Cross(p[i]-S[Sn-1],S[Sn]-S[Sn-1]))<0)--Sn;
for(int i=1;i<Sn;++i)Ans.push_back(S[i]);
Sn=0;
for(int i=n-1;i>=0;S[++Sn]=p[i--])
while(Sn>=2&&Sign(Cross(p[i]-S[Sn-1],S[Sn]-S[Sn-1]))<0)--Sn;
for(int i=1;i<Sn;++i)Ans.push_back(S[i]);
return Ans;
}
inline bool OnLeft(Point p,Line l){return Sign(Cross(p-l.p,l.v))==-1;}//点p是否在线l左侧
inline Point CrossP(Line A,Line B){return A.p+A.v*(Cross(B.v,A.p-B.p)/Cross(A.v,B.v));}//直线交点
Point P[305];
Line Q[305];
std::vector<Point> HPI(std::vector<Line> L)//半平面交
{
std::sort(L.begin(),L.end());
int n=L.size(),Qh=0,Qt=0;
Q[0]=L[0];
for(int i=1;i<n;++i)
{
while(Qh<Qt&&!OnLeft(P[Qt-1],L[i]))--Qt;
while(Qh<Qt&&!OnLeft(P[Qh],L[i]))++Qh;
if(Sign(Cross(L[i].v,Q[Qt].v)))Q[++Qt]=L[i];
else if(OnLeft(L[i].p,Q[Qt]))Q[Qt]=L[i];
if(Qh<Qt)P[Qt-1]=CrossP(Q[Qt-1],Q[Qt]);
}
while(Qh<Qt&&!OnLeft(P[Qt-1],Q[Qh]))--Qt;
std::vector<Point> Ans;
if(Qt-Qh<=1)return Ans;//没有公共区域
P[Qt]=CrossP(Q[Qh],Q[Qt]);
for(int i=Qh;i<=Qt;++i)Ans.push_back(P[i]);
return Ans;
}
double Area(std::vector<Point> Poly)//求多边形面积
{
double Sum=0;
int n=Poly.size();
for(int i=0;i<n;++i)Sum+=Cross(Poly[i],Poly[(i+1)%n]);
return Sum/2;
}
int main()
{
//freopen("in.txt","r",stdin);
for(int n;~scanf("%d",&n);)
{
for(int i=1;i<=n;++i)scanf("%lf%lf%lf",&Mac[i].x,&Mac[i].y,&Mac[i].z);
for(int i=1;i<=3;++i)scanf("%lf%lf",&Camera[i].x,&Camera[i].y);
std::vector<Point> Shadow[4];
std::vector<Line> Ls;
for(int i=1;i<=3;++i)
{
for(int j=1;j<=n;++j)Shadow[i].push_back(Projection(Camera[i],Mac[j]));//投影到地面
Shadow[i]=Convex_Hull(Shadow[i]);//求出凸包
int Ss=Shadow[i].size();
for(int j=0;j<Ss;++j)Ls.push_back((Line){Shadow[i][(j+1)%Ss],Shadow[i][j]-Shadow[i][(j+1)%Ss]});//转化位半平面交问题
}
Shadow[0]=HPI(Ls);
printf("%.2f\n",Abs(Area(Shadow[0])));//面积取绝对值
}
return 0;
}
[HDU4316]Mission Impossible(计算几何/凸包/半平面交)
标签:ref const sig cto iss double ++i 平面 uniq
原文地址:https://www.cnblogs.com/LanrTabe/p/11254274.html