码迷,mamicode.com
首页 > 其他好文 > 详细

最小费用最大流问题

时间:2019-07-29 23:01:52      阅读:168      评论:0      收藏:0      [点我收藏+]

标签:cost   时间复杂度   blog   最大   顶点   art   函数   als   bfs   

费用流

假设每条边除了有一个容量限制外,还有一个单位流量所需的费用(cost)。该网络中花费最小的最大流称为最小费用最大流,即总流量最大的情况下,总费用最小的流。

和 Edmonds-Karp 算法类似,但每次用 Bellman-Ford 算法而非 BFS 找增广路。只要初始流是该流量下的最小费用可行流,每次增广后的新流都是新流量下的最小费用流。

Bellman-Ford版

如何用优先队列代替Bellman-Ford中的普通队列就是SPFA版。

struct Edge{
    int from, to, cap, flow, cost;
    Edge(int u, int v, int c, int f, int w):from(u), to(v), cap(c), flow(f), cost(w){}
};

struct MCMF
{
    int n, m;
    vector<Edge>edges;
    vector<ll>G[maxn];
    int inq[maxn];      //是否在队列中
    int d[maxn];        //Bellman-Ford
    int p[maxn];        //上一条弧
    int a[maxn];         //可改进量

    void init(int n)
    {
        this->n = n;
        for(int i = 0;i < n;i++)  G[i].clear();
        edges.clear();
    }

    void AddEdge(int from, int to, int cap, int cost)
    {
        edges.push_back(Edge(from, to, cap, 0, cost));      //有向边
        edges.push_back(Edge(to ,from, 0, 0, -cost));
        m = edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }

    bool BellmanFord(int s, int t, int& flow, int& cost)
    {
        for(int i = 0;i < n;i++)  d[i] = INF;
        memset(inq, 0, sizeof(inq));
        d[s] = 0; inq[s] =1; p[s] = 0;a[s] = INF;

        queue<int>Q;;
        Q.push(s);
        while(!Q.empty())
        {
            int u = Q.front(); Q.pop();
            inq[u] = 0;
            for(int i = 0;i < G[u].size();i++)
            {
                Edge& e = edges[G[u][i]];
                if(e.cap > e.flow && d[e.to] > d[u] + e.cost)
                {
                    d[e.to] = d[u] + e.cost;
                    p[e.to] = G[u][i];
                    a[e.to] = min(a[u], e.cap - e.flow);
                    if(!inq[e.to]){ Q.push(e.to); inq[e.to] = 1;}
                }
            }
        }
        if(d[t] == INF)  return false;
        flow += a[t];
        cost += d[t] * a[t];
        for(int u = t;u != s;u = edges[p[u]].from)
        {
            edges[p[u]].flow += a[t];
            edges[p[u]^1].flow -=a[t];
        }
        return true;
    }

    //需要保证初始网络中没有负权圈
    int MaxcostMaxflow(int s, int t, int& cost)
    {
        int flow = 0; cost = 0;
        while(BellmanFord(s, t, flow, cost));
        return flow;
    }
}mcmf;

Dijkstra版

可以采用加入“势函数”后的Dijkstra算法。因为对于每一条边 $e=(u, v)$,有如下事实成立:$h(v) \leq h(u)+e.cost$ (其中 $h(u)$ 表示 $s$ 到 $u$ 的最短距离),因此令 $dis[v] = dis[u] + e.cost + h[u] - h[v]$,那么所有的 $dist$ 值必然大于等于0,这样就能用 $Dijkstra$ 求解了。

下面代码中用了一个优先队列,每次优先队列列出 $dist$ 值小的元素。

整个算法的时间复杂度为 $O(FElogV)$($F$ 是流量,$E$ 是边数,$V$ 是顶点数)。

struct edge {
    int to, capacity, cost, rev;
    edge() {}
    edge(int to, int _capacity, int _cost, int _rev) :to(to), capacity(_capacity), cost(_cost), rev(_rev) {}
};
struct Min_Cost_Max_Flow {
    int V, H[maxn + 5], dis[maxn + 5], PreV[maxn + 5], PreE[maxn + 5];
    vector<edge> G[maxn + 5];
    //调用前初始化
    void Init(int n) {
        V = n;
        for (int i = 0; i <= V; ++i)G[i].clear();
    }
    //加边
    void Add_Edge(int from, int to, int cap, int cost) {
        G[from].push_back(edge(to, cap, cost, G[to].size()));
        G[to].push_back(edge(from, 0, -cost, G[from].size() - 1));
    }
    //flow是自己传进去的变量,就是最后的最大流,返回的是最小费用
    int Min_cost_max_flow(int s, int t, int f, int& flow) {
        int res = 0; fill(H, H + 1 + V, 0);
        while (f) {
            priority_queue <pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>> > q;
            fill(dis, dis + 1 + V, INF);
            dis[s] = 0; q.push(pair<int, int>(0, s));
            while (!q.empty()) {
                pair<int, int> now = q.top(); q.pop();
                int v = now.second;
                if (dis[v] < now.first)continue;
                for (int i = 0; i < G[v].size(); ++i) {
                    edge& e = G[v][i];
                    if (e.capacity > 0 && dis[e.to] > dis[v] + e.cost + H[v] - H[e.to]) {
                        dis[e.to] = dis[v] + e.cost + H[v] - H[e.to];
                        PreV[e.to] = v;
                        PreE[e.to] = i;
                        q.push(pair<int, int>(dis[e.to], e.to));
                    }
                }
            }
            if (dis[t] == INF)break;
            for (int i = 0; i <= V; ++i)H[i] += dis[i];
            int d = f;
            for (int v = t; v != s; v = PreV[v])d = min(d, G[PreV[v]][PreE[v]].capacity);
            f -= d; flow += d; res += d*H[t];
            for (int v = t; v != s; v = PreV[v]) {
                edge& e = G[PreV[v]][PreE[v]];
                e.capacity -= d;
                G[v][e.rev].capacity += d;
            }
        }
        return res;
    }
    int Max_cost_max_flow(int s, int t, int f, int& flow) {
        int res = 0;
        fill(H, H + 1 + V, 0);
        while (f) {
            priority_queue <pair<int, int>> q;
            fill(dis, dis + 1 + V, -INF);
            dis[s] = 0;
            q.push(pair<int, int>(0, s));
            while (!q.empty()) {
                pair<int, int> now = q.top(); q.pop();
                int v = now.second;
                if (dis[v] > now.first)continue;
                for (int i = 0; i < G[v].size(); ++i) {
                    edge& e = G[v][i];
                    if (e.capacity > 0 && dis[e.to] < dis[v] + e.cost + H[v] - H[e.to]) {
                        dis[e.to] = dis[v] + e.cost + H[v] - H[e.to];
                        PreV[e.to] = v;
                        PreE[e.to] = i;
                        q.push(pair<int, int>(dis[e.to], e.to));
                    }
                }
            }
            if (dis[t] == -INF)break;
            for (int i = 0; i <= V; ++i)H[i] += dis[i];
            int d = f;
            for (int v = t; v != s; v = PreV[v])d = min(d, G[PreV[v]][PreE[v]].capacity);
            f -= d; flow += d;
            res += d*H[t];
            for (int v = t; v != s; v = PreV[v]) {
                edge& e = G[PreV[v]][PreE[v]];
                e.capacity -= d;
                G[v][e.rev].capacity += d;
            }
        }
        return res;
    }
}mcmf;

注:

  • 如果是求最大费用,只需加边是边权取反,最终费用也取反
  • 第一种可能被卡时间

 

参考链接:https://blog.csdn.net/u014800748/article/details/44059993

 

最小费用最大流问题

标签:cost   时间复杂度   blog   最大   顶点   art   函数   als   bfs   

原文地址:https://www.cnblogs.com/lfri/p/11267000.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!