标签:== ext 长度 ORC 答案 syn ons tail more
A | B | C | D | E |
---|---|---|---|---|
贪心 | 数学 | dp | 计数,组合 | 单调队列,rmq |
1100 | 1100 | 1400 | 1700 | 2100 |
有两个就凑一对,之后落单的除二。
const int MAXN = 1e3 + 3;
int cnt[MAXN];
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n, k;
cin >> n >> k;
FOR(i, 0, n) {
int x;
cin >> x;
++cnt[x - 1];
}
int res = 0, odd = 0;
FOR(i, 0, k) {
res += cnt[i] / 2;
odd += cnt[i] % 2;
}
res *= 2;
res += (odd + 1) / 2;
// dbg(odd);
cout << res << "\n";
return 0;
}
解方程。
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n, k;
cin >> n >> k;
double delta = 9.0 / 4 + 2LL * (k + n);
cout << n - int(-1.5 + sqrt(delta) + 1e-9) << "\n";
return 0;
}
dp,记录当前列取1,2和不取的最优情况。
const int MAXN = 1e5 + 3;
int h[2][MAXN];
ll dp[3][MAXN];
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n;
cin >> n;
FOR(i, 0, n) { cin >> h[0][i]; }
FOR(i, 0, n) { cin >> h[1][i]; }
dp[0][0] = h[0][0];
dp[1][0] = h[1][0];
dp[2][0] = 0;
FOR(i, 1, n) {
dp[0][i] = max(dp[1][i - 1], dp[2][i - 1]) + h[0][i];
dp[1][i] = max(dp[0][i - 1], dp[2][i - 1]) + h[1][i];
dp[2][i] = max(dp[0][i - 1], dp[1][i - 1]);
dp[2][i] = max(dp[2][i], dp[2][i - 1]);
}
cout << max(max(dp[0][n - 1], dp[1][n - 1]), dp[2][n - 1]) << "\n";
return 0;
}
显然a和b对于答案的影响是相对独立的,只要记录每个长度的数的个数,之后分情况讨论。
const int MAXN = 1e5 + 3;
const int MAXL = 11;
string nums[MAXN];
int cnt[MAXL];
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n;
cin >> n;
FOR(i, 0, n) {
cin >> nums[i];
++cnt[nums[i].length()];
}
auto first = [&](string num, int l) {
int res = 0, n = num.length(), p = 1;
reverse(ALL(num));
FOR(i, 0, max(n, l)) {
if (i < l) {
p = p * 10LL % MOD;
}
if (i < n) {
res = (res + 1LL * (num[i] - '0') * p) % MOD;
p = p * 10LL % MOD;
}
}
return res;
};
auto second = [&](string num, int l) {
int res = 0, n = num.length(), p = 1;
reverse(ALL(num));
FOR(i, 0, max(n, l)) {
if (i < n) {
res = (res + 1LL * (num[i] - '0') * p) % MOD;
p = p * 10LL % MOD;
}
if (i < l) {
p = p * 10LL % MOD;
}
}
return res;
};
int ans = 0;
FOR(i, 0, n) {
FOR(j, 0, MAXL) {
if (cnt[j] == 0) {
continue;
}
int t = first(nums[i], j);
ans = (ans + 1LL * t * cnt[j]) % MOD;
t = second(nums[i], j);
ans = (ans + 1LL * t * cnt[j]) % MOD;
}
}
cout << ans << "\n";
return 0;
}
枚举矩阵求最小值就好了,可以用rmq,也可以用单调队列。
const int MAXN = 3e3 + 3;
int h[MAXN][MAXN], mi[MAXN][MAXN];
int que[MAXN], head, tail;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n, m, a, b, x, y, z, g;
cin >> n >> m >> a >> b;
cin >> g >> x >> y >> z;
FOR2(i, 0, n, j, 0, m) {
h[i][j] = g;
g = (1LL * x * g + y) % z;
}
FOR(i, 0, n) {
head = tail = 0;
FOR(j, 0, b) {
while (head < tail && h[i][j] <= h[i][que[tail - 1]]) {
--tail;
}
que[tail++] = j;
}
mi[i][b - 1] = h[i][que[head]];
FOR(j, b, m) {
if (j - que[head] >= b) {
++head;
}
while (head < tail && h[i][j] <= h[i][que[tail - 1]]) {
--tail;
}
que[tail++] = j;
mi[i][j] = h[i][que[head]];
}
}
ll ans = 0;
FOR(j, b - 1, m) {
head = tail = 0;
FOR(i, 0, a) {
while (head < tail && mi[i][j] <= mi[que[tail - 1]][j]) {
--tail;
}
que[tail++] = i;
}
ans += mi[que[head]][j];
FOR(i, a, n) {
if (i - que[head] >= a) {
++head;
}
while (head < tail && mi[i][j] <= mi[que[tail - 1]][j]) {
--tail;
}
que[tail++] = i;
ans += mi[que[head]][j];
}
}
cout << ans << "\n";
return 0;
}
Codeforces Round #574 (Div. 2)
标签:== ext 长度 ORC 答案 syn ons tail more
原文地址:https://www.cnblogs.com/cycleke/p/11268378.html