标签:deque name == false pac mod head print scan
给你一棵无根树,要你寻找一个根节点使得在将一条边权变为\(0\)后,离树根最远的点到根节点的距离最小。
本题和求树的直径很像,不过要记得的东西有点多,且状态也很多。
\(fi[u][0]\)表示在\(u\)这个结点不删边沿着子树方向能到达的最远距离,\(se[u][0]\)为第二远,\(th[u][0]\)为第三远,\(fa[u][0]\)表示沿着父亲方向能到达的最远距离,第二维为\(1\)表示删一条边能到达的距离。
不删边的转移和求树的直径转移方程基本上是一样的,就不再说明。
首先从以\(u\)为根的子树中删除一条边,能到达的最远距离的最小值为\(fi[u][1]=max(fi[v][0],max(fi[v][1],se[v][0]+w))\),\(v\)为\(u\)沿着\(v\)往子树方向走是最远的,也就是说它有三种状态:
次远距离的最小值一样的转移方法,至于对于\(u\)在删除一条边后\(fi[u][1]\)与\(se[u][0]\)的大小关系我们暂时先不考虑。
上面的转移方程只能处理从子树方向的转移,却不能处理沿着父亲结点方向能到达的最远距离,因此我们需要再进行一次\(dfs\)来进行状态转移。
假设当前已经处理出了父亲结点\(u\)沿着其父亲结点在不删边的情况下不沿着\(v\)这个方向所能到达的最远距离\(fa[u][0]\)和删边的最远距离\(fa[u][1]\),那么子结点\(v\)沿着\(u\)所能到达的最远距离的转移:
#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("D://Code//in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0)
const double eps = 1e-8;
const int mod = 1000000007;
const int maxn = 2e5 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL;
int t, n, tot, u, v, w, ans, idx;
int head[maxn], fa[maxn][3], d[maxn];
int idx1[maxn], idx2[maxn], idx3[maxn];
int fi[maxn][3], se[maxn][3], th[maxn][3];
struct edge {
int v, w, next;
}ed[maxn*2];
void add(int u, int v, int w) {
ed[tot].v = v;
ed[tot].w = w;
ed[tot].next = head[u];
head[u] = tot++;
}
void dfs1(int u, int p) {
for(int i = head[u]; ~i; i = ed[i].next) {
int v = ed[i].v;
if(v == p) continue;
dfs1(v, u);
d[v] = ed[i].w;
if(fi[v][0] + ed[i].w > fi[u][0]) {
th[u][0] = se[u][0];
idx3[u] = idx2[u];
se[u][0] = fi[u][0];
idx2[u] = idx1[u];
idx1[u] = v;
fi[u][0] = fi[v][0] + ed[i].w;
} else if(fi[v][0] + ed[i].w > se[u][0]) {
th[u][0] = se[u][0];
idx3[u] = idx2[u];
se[u][0] = fi[v][0] + ed[i].w;
idx2[u] = v;
} else if(fi[v][0] + ed[i].w > th[u][0]) {
th[u][0] = fi[v][0] + ed[i].w;
idx3[u] = v;
}
}
fi[u][1] = min(fi[idx1[u]][0], max(fi[idx1[u]][1], se[idx1[u]][0]) + d[idx1[u]]);
se[u][1] = min(fi[idx2[u]][0], max(fi[idx2[u]][1], se[idx2[u]][0]) + d[idx2[u]]);
}
void dfs2(int u, int p) {
int tmp = min(max(fa[u][1], fi[u][0]), max(fa[u][0], max(fi[u][1], se[u][0])));
if(tmp < ans) ans = tmp, idx = u;
else if(tmp == ans && u < idx) ans = tmp, idx = u;
for(int i = head[u]; ~i; i = ed[i].next) {
int v = ed[i].v;
if(v == p) continue;
if(idx1[u] == v) {
fa[v][0] = max(fa[u][0], se[u][0]) + ed[i].w;
fa[v][1] = min(max(fa[u][0], se[u][0]), min(max(fa[u][1], se[u][0]), max(fa[u][0], max(se[u][1], th[u][0]))) + ed[i].w);
} else {
fa[v][0] = max(fa[u][0], fi[u][0]) + ed[i].w;
if(idx2[u] == v) {
fa[v][1] = min(max(fa[u][0], fi[u][0]), min(max(fa[u][1], fi[u][0]), max(fa[u][0], max(fi[u][1], th[u][0]))) + ed[i].w);
} else {
fa[v][1] = min(max(fa[u][0], fi[u][0]), min(max(fa[u][1], fi[u][0]), max(fa[u][0], max(fi[u][1], se[u][0]))) + ed[i].w);
}
}
dfs2(v, u);
}
}
int main() {
#ifndef ONLINE_JUDGE
FIN;
#endif // ONLINE_JUDGE
scanf("%d", &t);
while(t--) {
scanf("%d", &n);
tot = 0;
for(int i = 1; i <= n; ++i) {
head[i] = -1;
d[i] = idx1[i] = idx2[i] = idx3[i] = 0;
for(int j = 0; j < 2; ++j) {
fi[i][j] = se[i][j] = th[i][j] = fa[i][j] = 0;
}
}
for(int i = 1; i <= n - 1; ++i) {
scanf("%d%d%d", &u, &v, &w);
add(u, v, w);
add(v, u, w);
}
dfs1(1, 0);
ans = inf, idx = 1;
dfs2(1, 0);
printf("%d %d\n", idx, ans);
}
return 0;
}
2019年杭电多校第三场 1011题Squrirrel(HDU6613+树DP)
标签:deque name == false pac mod head print scan
原文地址:https://www.cnblogs.com/Dillonh/p/11269111.html