标签:use mat 相等 ref therefore 莫比乌斯反演 bec inline rac
对于任意整数 \(x\in[1,n]\) 设 \(g(x)=\lfloor\frac{k}{\lfloor\frac{k}{x}\rfloor}\rfloor\)
\(\because f(x)=k/x\) 单调递减
又 \(g(x)=\lfloor\frac{k}{\lfloor\frac{k}{x}\rfloor}\rfloor\geq\lfloor\frac{k}{(\frac{k}{x})}\rfloor=x\)
\(\therefore \lfloor\frac{k}{g(x)}\rfloor\leq\lfloor\frac{k}{x}\rfloor\)
\(\because \lfloor\frac{k}{g(x)}\rfloor\geq\lfloor\frac{k}{(\frac{k}{\lfloor\frac{k}{x}\rfloor})}\rfloor=\lfloor\frac{k}{k}\lfloor\frac{k}{x}\rfloor\rfloor=\lfloor\frac{k}{x}\rfloor\)
\(\therefore \lfloor\frac{k}{g(x)}\rfloor=\lfloor\frac{k}{x}\rfloor\)
综上得,对于 \(i\in[x,\lfloor\frac{k}{\lfloor\frac{k}{x}\rfloor}\rfloor]\),\(\lfloor\frac{k}{i}\rfloor\)的值相等
标签:use mat 相等 ref therefore 莫比乌斯反演 bec inline rac
原文地址:https://www.cnblogs.com/wwlwQWQ/p/11272819.html