标签:war mac地址表 learning 结构 agg port 生成 必须 交换
博文大纲:
MSTP是一个共有的生成树协议,在实际生产环境中得到广泛的应用。
MSTP(Multiple Spanning tree Algorithm and protocol)是多生成树技术,允许在一个交换环境中运行多个生成树,每个生成树称为一个实例(instance)。实例时间的生成树彼此独立,如一个实例下的阻塞接口在另一个实例上可能是一个转发端口。和Cisco私有的PVST技术不同,MSTP允许多个vlan运行一个生成树实例,相比较Cisco的PVST技术,这是一个优势,因为在Cisco交换机中,运行PVST技术,是一个实例一棵树,实例越多,生成树越多,交换机维护这些生成树,也是需要消耗硬件资源及网络开销的。大部分情况下,运行多个生成树实例的好处就在于链路的负载分担,但是当只有一条冗余链路时,运行两个生成树实例完全可以实现负载均衡,同时又能节约系统开销,如下图所示:
上图的网络环境中存在两个生成树实例,不同实例的根网桥在不同的物理交换机上,不但可以实现负载分担,而且不会因为过多的实例而占用系统资源。
MSTP将环路网络修剪成一个无环的树形网络,避免广播风暴的产生,同时还提供了数据转发的多个冗余路径,在数据转发过程中实现vlan数据的负载均衡。MSTP还兼容STP和RSTP。
MSTP把一个交换网络划分成多个域,每个域内形成多个生成树,生成树之间彼此独立。每颗生成树称为一个多生成树实例(Multiple spanning tree instance,MSTI),每个域称为一个MST域。
MSTP通过设置vlan映射表(就是vlan和MSTI的对应关系表),把vlan和MSTP联系起来。每个vlan只能对应一个MSTI,即同一vlan的数据只能在一个MSTI中传输,而一个MSTI可以对应多个vlan。
在MSTP中,通过把整个互联的二层网络划分成若干个域。在域内,把其中的vlan分成若干组,每组具有相同的拓扑结构,然后定义若干个MSTI,并把这些生成树实例和不同的vlan映射起来。
所谓实例就是多个vlan的一个集合。通过将多个vlan映射到一个实例,可以节省通信开销和资源占用率。MSTP各个实例拓扑的计算相互独立,在这些实例上可以实现负载均衡。可以把多个相同拓扑结构的vlan映射到同一个实例里,这些vlan在接口上的转发状态取决于接口在对应MSTP实例的状态。
如果仅仅是为了防止广播风暴等环路问题,运行CST(CST也是一种生成树协议,关于CST技术自行查阅相关资料,这里不叙述了)已经足够。运行多实例的主要目的在于使其负载分担链路负载。所以运行的生成树实例数量一般取决于冗余线路的数量,如果只有一条冗余链路,那么最好运行两个实例。如果有两条冗余链路,那么运行三个实例将是最好的选择,并尽可能保证每个实例中流量相差不大。
一个二层交换网络可以划分多个MST域(多生成树域),每个生成树域可以划分多个MSTI,每个实例中可以映射多个vlan。
在下图中的MSTP网络包含3个MST域,分别是A、B、C。每个MST域中包含一个或多个MSTI。MST域B中包含两个MSTI,分别是instance 1和instance 2。instance 1和vlan 1-5映射,instance 2和vlan 6-10映射。
MST域是多生成树域,由局域网中的多台交换机及它们之间的网段构成。一个局域网可以存在多个MST域。各MST域之间在物理上直接或间接相连。用户可以通过MSTP配置命令把多台交换机划分在同一个MST域内,MST域中的交换机都启用了MSTP,配置了相同的域名及vlan映射表(vlan映射表是MST域的属性,它描述的是vlan和MSTI之间的映射关系)。
一个MST域内可以运行多个MSTI,MSTI之间彼此独立,MSTI可以与一个或者多个vlan对应,但每个vlan只能与一个MSTI对应。(有没有感觉有点像父子关系?哈哈,一个儿子只能有一个亲爹,但一个爸爸可以有好多儿子)。
MSTP中的端口角色主要有根端口、指定端口、预备端口、备份端口和边缘端口。除边缘端口外,其他端口角色都参与MSTP的计算过程,同一端口在不同的MSTI中可以担任不同的角色。(下面解释下相关端口的作用,了解即可,因为这些端口角色是由生成树协议自动协商的,不需要人为指定。)
MSTP的端口状态只有如下三种(了解端口状态,才可以熟练的排除生成树故障):
在面对一些二层生成树***时,下面四个技术可以增加生成树的安全性。
在交换机上,通常将直接与用户终端(如PC机)或服务器等非交换机设备相连的端口配置为边缘接口,以实现这些端口的快速收敛,正常情况下,这些端口是不会接收到BPDU。如果有人伪造BPDU恶意***交换机,当这些端口收到BPDU时,交换机会自动将这些端口设置为非边缘端口,并重新进行生成树计算,从而引起网络震荡。
启用BPDU保护功能后,如果接口收到BPDU报文,那么该接口将被自动关闭,从而避免了后续的***及由此带来的网络震荡。
配置命令如下:
[Huawei]stp bpdu-protection #开启BPDU保护
由于网络管理人员失误或人为恶意攻 击,网络中的合法交换机端口可能会收到优先级更高的BPDU,这将使目前网络中的根失去根地位,之后将重新计算生成树,引起网络震荡,还有可能将网络流量从高速链路上转移到低俗链路中,造成网络拥塞。为了防止这种情况出现,交换机提供根保护功能。根保护功能通过维持指定端口的角色来保护根交换机的地位。配置了根保护功能的端口,在所有实例上的端口角色都保持为指定端口。当端口接收到优先级更高的BPDU时,端口角色不会变为非指定端口,而是进入侦听状态,不再转发报文。经过足够长的时间,如果端口一直没有再收到优先级较高的BPDU,端口会恢复到原来的正常状态。
配置命令:
[Huawei]in g0/0/1 #进入指定端口
[Huawei-GigabitEthernet0/0/1]stp root-protection #开启根保护
根端口和其他阻塞端口状态会周期性地接收来自上游交换机(在本博文的第三张配图中,R1就是R2和R3的上游交换机,R4就是R2和R3的下游交换机)的BPDU。当链路拥塞或者单向链路故障时,这些端口无法接收来自上游交换机的BPDU,交换机会重新选择根端口。原先的根端口会转变为指定端口,而原先的阻塞端口会迁移到转发状态,从而造成交换网络中可能产生环路。环路保护功能会抑制这种环路产生。在启动了环路保护功能后,如果根端口收不到来自上游的BPDU,根端口会被设置进入阻塞状态;而阻塞端口则会一直保持在阻塞状态,不转发报文,从而不会在网络中形成环路 。
配置命令:
[Huawei]in g0/0/1 #进入根端口
[Huawei-GigabitEthernet0/0/1]stp loop-protection #启用环路保护功能
交换机在接收到TC-BPDU报文后,会执行MAC地址表项和ARP表项的删除操作,如果有人伪造TC-BPDU报文恶意***交换机,交换机短时间内会收到很多TC-BPDU报文,频繁的删除操作会给交换机造成很大的负担,给网络的稳定性带来很大的隐患,启用TC保护功能后,在固定的时间内,MSTP进程处理TC类型BPDU报文的次数可配置。如果在固定的时间内,MSTP进程收到TC类型的BPDU报文数量大于配置的阈值,那么MSTP进程只会处理阈值指定的次数。对于其他超出阈值的TC类型BPDU报文,定时器到期后,MSTP进程对其统一处理一次。这样可以避免频繁地删除MAC地址表项和ARP表项,从而达到保护交换机的目的。
配置命令:
[Huawei]stp tc-protection threshold 3 #指定阈值为3。
1、配置PC及路由器的IP地址。
2、配置交换机的vlan及trunk。
3、交换机开启MSTP协议,配置相同区域名称。
4、交换机建立两个实例,分别将vlan 10 和vlan 20加入到不同的实例中,并为两个实例指定不同的根网桥,实例1的根网桥在S1上,实例2的根网桥在S2上。
1、配置路由器IP地址(PC机的IP地址自行配置):
[R1]in g0/0/0
[R1-GigabitEthernet0/0/0]ip add 10.1.10.254 24
[R1-GigabitEthernet0/0/0]in g0/0/1
[R1-GigabitEthernet0/0/1]ip add 10.1.20.254 24
[R1-GigabitEthernet0/0/1]un shut <!--接口默认为开启状态,若为关闭状态,可使用该命令开启-->
2、配置各个交换机的VLAN及Trunk:
我这里将所有和客户机连接的接口配置为Access接口,交换机和交换机连接的接口配置为trunk接口。交换机和路由器连接的接口配置为Hybrid接口。
S1的配置如下:
[S1]vlan ba 10 20 <!--创建vlan10 和vlan20-->
[S1]in g0/0/2 <!--进入该接口-->
[S1-GigabitEthernet0/0/2]port link-type trunk <!--配置接口模式为trunk-->
[S1-GigabitEthernet0/0/2]port trunk allow-pass vlan all <!--放行所有vlan流量通过-->
[S1-GigabitEthernet0/0/2]in g0/0/1 <!--进入该接口-->
[S1-GigabitEthernet0/0/1]port link-type trunk <!--配置接口模式为trunk-->
[S1-GigabitEthernet0/0/1]port trunk allow-pass vlan all <!--放行所有vlan流量通过-->
[S1-GigabitEthernet0/0/1]in g0/0/3 <!--进入该接口-->
[S1-GigabitEthernet0/0/3]port link-type hybrid <!--配置接口模式为Hybrid-->
[S1-GigabitEthernet0/0/3]port hybrid untagged vlan 10 <!--将vlan 10 添加到该接口的untag列表-->
[S1-GigabitEthernet0/0/3]port hybrid pvid vlan 10 <!--配置接口PVID为vlan 10-->
S2的配置如下:
[S2]vlan ba 10 20 <!--创建vlan10 和vlan20-->
[S2]in g0/0/2 <!--进入该接口-->
[S2-GigabitEthernet0/0/2]port link-type trunk <!--配置接口模式为trunk-->
[S2-GigabitEthernet0/0/2]port trunk allow-pass vlan all <!--放行所有vlan流量通过-->
[S2-GigabitEthernet0/0/2]in g0/0/1 <!--进入该接口-->
[S2-GigabitEthernet0/0/1]port link-type trunk <!--配置接口模式为trunk-->
[S2-GigabitEthernet0/0/1]port trunk allow-pass vlan all <!--放行所有vlan流量通过-->
[S2-GigabitEthernet0/0/1]in g0/0/3 <!--进入该接口-->
[S2-GigabitEthernet0/0/3]port link-type hybrid <!--配置接口模式为Hybrid-->
[S2-GigabitEthernet0/0/3]port hybrid untagged vlan 20 <!--将vlan 12 添加到该接口的untag列表-->
[S2-GigabitEthernet0/0/3]port hybrid pvid vlan 20 <!--配置接口PVID为vlan 20-->
S3的配置如下:
[S3]vlan ba 10 20 <!--创建vlan10 和vlan20-->
[S3]in g0/0/3 <!--进入该接口-->
[S3-GigabitEthernet0/0/3]port link-type access <!--配置接口模式为access-->
[S3-GigabitEthernet0/0/3]port default vlan 10 <!--将接口添加到vlan 10中-->
[S3-GigabitEthernet0/0/3]in g0/0/4 <!--进入该接口-->
[S3-GigabitEthernet0/0/4]port link-type access <!--配置接口模式为access-->
[S3-GigabitEthernet0/0/4]port default vlan 20 <!--将接口添加到vlan 20中-->
[S3-GigabitEthernet0/0/4]in g0/0/1 <!--进入该接口-->
[S3-GigabitEthernet0/0/1]port link-type trunk <!--配置接口模式为trunk-->
[S3-GigabitEthernet0/0/1]port trunk allow-pass vlan all <!--放行所有vlan流量通过-->
[S3-GigabitEthernet0/0/1]in g0/0/2 <!--进入该接口-->
[S3-GigabitEthernet0/0/2]port link-type trunk <!--配置接口模式为trunk-->
[S3-GigabitEthernet0/0/2]port trunk allow-pass vlan all <!--放行所有vlan流量通过-->
3、配置MSTP
上面的需求是要求vlan 10的客户端通过S3和S1到达网关,vlan 20的客户端通过S3和S2到达网关,从而实现链路的负载分担。在接下来的配置中,把S1配置为instance 1的根,而instance 1实例和vlan 10关联,那么vlan的流量因为S2和S3之间的链路阻塞而通过左边到达网关。同理,instance 2实例中配置S2为根,并通过右边到达网关。
S1的配置如下:
[S1]stp mo mstp <!--将交换机配置成MSTP模式-->
[S1]stp region-configuration <!--进入MSTP配置模式-->
[S1-mst-region]region-name lv <!--配置域名为“lv”-->
[S1-mst-region]revision-level 1 <!--配置版本等级为“1”-->
[S1-mst-region]instance 1 vlan 10 <!--将vlan 10加入实例1中-->
[S1-mst-region]instance 2 vlan 20 <!--将vlan 20加入实例2中-->
[S1-mst-region]active region-configuration <!--激活配置(必须配置)-->
[S1-mst-region]quit <!--退出配置模式-->
[S1]stp instance 1 root primary <!--配置此交换机为实例1的主根-->
[S1]stp instance 2 root secondary <!--配置此交换机为实例2的备根-->
S2的配置如下:
[S2]stp mode mstp <!--将交换机配置成MSTP模式-->
[S2]stp region-configuration <!--进入MSTP配置模式-->
[S2-mst-region]region-name lv <!--配置域名为“lv”-->
[S2-mst-region]revision-level 1 <!--配置版本等级为“1”-->
[S2-mst-region]instance 1 vlan 10 <!--将vlan 10加入实例1中-->
[S2-mst-region]instance 2 vlan 20 <!--将vlan 20加入实例2中-->
[S2-mst-region]active region-configuration <!--激活配置(必须配置)-->
[S2-mst-region]quit <!--退出配置模式-->
[S2]stp instance 1 root secondary <!--配置此交换机为实例1的备根-->
[S2]stp instance 2 root primary <!--配置此交换机为实例2的主根-->
S3的配置如下:
[S3]stp mode mstp <!--将交换机配置成MSTP模式-->
[S3]stp region-configuration <!--进入MSTP配置模式-->
[S3-mst-region]region-name lv <!--配置域名为“lv”-->
[S3-mst-region]revision-level 1 <!--配置版本等级为“1”-->
[S3-mst-region]instance 1 vlan 10 <!--将vlan 10加入实例1中-->
[S3-mst-region]instance 2 vlan 20 <!--将vlan 20加入实例2中-->
[S3-mst-region]active region-configuration <!--激活配置(必须配置)-->
4、验证:
在S3上查看STP接口角色及状态信息,结果如下(其中MSTID列表示实例):
[S3]dis stp brief #查看STP接口角色及状态信息
MSTID Port Role STP State Protection
0 GigabitEthernet0/0/1 DESI FORWARDING NONE
0 GigabitEthernet0/0/2 ROOT FORWARDING NONE
0 GigabitEthernet0/0/3 DESI FORWARDING NONE
0 GigabitEthernet0/0/4 DESI FORWARDING NONE
1 GigabitEthernet0/0/1 ROOT FORWARDING NONE
1 GigabitEthernet0/0/2 ALTE DISCARDING NONE
1 GigabitEthernet0/0/3 DESI FORWARDING NONE
2 GigabitEthernet0/0/1 ALTE DISCARDING NONE
2 GigabitEthernet0/0/2 ROOT FORWARDING NONE
2 GigabitEthernet0/0/4 DESI FORWARDING NONE
可以看到实例 1中的GigabitEthernet0/0/2和实例 2中的GigabitEthernet0/0/1处于阻塞状态。同时,两个实例之间相互独立,彼此不受影响。而且现在vlan 10中的客户端可以和vlan 20中的客户端进行通信。
5、总结:
从上面的配置中发现,若要将所有实例配置在同一个域中,只需要配置同样的域名即可,但版本等级需一致,域中各个vlan对应的实例也需要一致。同一个生成树实例中,只能有一个主根和备根。需要注意的是,生成树协议无法实现互为备份(即主设备宕机,备份设备立马接替主设备的工作),它只能实现负载均衡,若需要实现互为备份,还需要使用VRRP技术,该技术将在后续博文写出。
————本文至此结束,感谢阅读。
标签:war mac地址表 learning 结构 agg port 生成 必须 交换
原文地址:https://blog.51cto.com/14154700/2425051