码迷,mamicode.com
首页 > 其他好文 > 详细

Codeforces-GYM101873 G Water Testing 皮克定理

时间:2019-08-03 00:48:08      阅读:78      评论:0      收藏:0      [点我收藏+]

标签:gcd   inline   长度   name   有趣   first   ace   包含   面积   

题意:

给定一个多边形,这个多边形的点都在格点上,问你这个多边形里面包含了几个格点。

题解:

对于格点多边形有一个非常有趣的定理:

多边形的面积S,内部的格点数a和边界上的格点数b,满足如下结论:

2S=2a+b-2

证明不难,对于格点长方形显然成立,对于高度为1的直角三角形也显然成立,那么我们想象,把两个满足皮克定理的多边形,沿着它们的一个平行与格线的边拼起来,假设拼的这个边长度为k,这两个图形原来在这里各有k个边界格点,拼起来之后,这2k个边界格点,变成了2个边界格点,和k-2个内部格点,神奇吧!它们的面积还是符合皮克定理, 任何图形都可以用长方形和高为1的直角三角形这样拼起来,因此定理得证。

边界格点数用gcd求,面积用叉乘求。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll,ll> pll;
const int maxn=1e5+10;
int n;
pll p[maxn];
inline ll gcd(ll m,ll n){return n?gcd(n,m%n):m;}
int main()
{
    cin>>n;
    for(int i=0;i<n;i++) scanf("%lld%lld",&p[i].first,&p[i].second);
    ll S2=0, b=0;
    for(int i=0;i<n;i++)
    {
        S2+=p[i].first*p[(i+1)%n].second-p[i].second*p[(i+1)%n].first;
        b+=gcd(abs(p[i].first-p[(i+1)%n].first),abs(p[i].second-p[(i+1)%n].second));
    }
    cout<<(abs(S2)-b+2)/2<<endl;
}

 

Codeforces-GYM101873 G Water Testing 皮克定理

标签:gcd   inline   长度   name   有趣   first   ace   包含   面积   

原文地址:https://www.cnblogs.com/isakovsky/p/11291650.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!