码迷,mamicode.com
首页 > 其他好文 > 详细

【纪中模拟2019.08.03】【JZOJ1308】取数游戏

时间:2019-08-03 21:29:10      阅读:71      评论:0      收藏:0      [点我收藏+]

标签:链接   其他   结束   turn   游戏   family   namespace   过程   str   

题目链接

 

题意:

  N个正整数围成一圈,规则如下:

•两个玩家轮流取数;
•先手玩家取任意一个数x;
•从第二步开始当前玩家只能取x(上一玩家取的数)相邻的数;
•直到取完所有的数,游戏结束;
•取得较多奇数的玩家获胜。

  保证双方都采取最优策略的同时,计算先手有多少种取法获胜。

  $1\le N\le 10^2,\quad 1\le x\le 10^3$

 

实现(100分):

  因为笔者不会SG函数,所以如果有绕弯子的描述请谅解。

  分析博弈过程,有$2^n$种形势,按博弈写程序会T。

  考虑DP,貌似取数的过程有后效性,然而这是因为不熟悉环的性质(套路)导致。事实上,当你取走环上一个数,并规定只能操作原数两端的其他数的时候,可以看做把环由某点断开、展平,并规定只能在这个区间的两端取数。所以第二步及以后的所有取数操作都不再具有后效性了,可以区间DP。

  于是我们知道,只能枚举$n$种展开方式,如果能获胜,令答案$+1$。

  定义$f_{i,j}$表示对于区间$[i,j]$(长度$<n$),先手取数比后手多取得奇数的个数,那么有$$f_{i,j}=max\{\,a_i-f_{i+1,j}\,,\,a_j-f_{i,j-1}\,\}$$

  先后手的转换:取相反数。

  注意区间左端点的取值范围:它和区间长度有关。要做全$2n$内的所有区间情况。

 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define IL inline
using namespace std;
const int N=100;

    int n,a[N*2+3];
    int f[N*2+3][N*2+3];
    
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    
    for(int i=1;i<=n;i++)
        a[i]&=1;
    for(int i=1;i<=n;i++)
        a[i+n]=a[i];
    
    for(int i=1;i<=n*2;i++)
        f[i][i]=a[i];
    
    for(int t=2;t<=n;t++)
        for(int i=1;i+t-1<=n*2;i++){
            int j=i+t-1;
            f[i][j]=max(a[i]-f[i+1][j],a[j]-f[i][j-1]);
            
        }
        
    int ans=0;
    for(int i=1;i<=n;i++)
    if(a[i]-f[i+1][i+n-1]>0)
        ans++;
        
    printf("%d",ans);
    
    return 0;
    
}

 

 

小结:

  问题多想两步,别一刀砍死,可能有转机。

 

【纪中模拟2019.08.03】【JZOJ1308】取数游戏

标签:链接   其他   结束   turn   游戏   family   namespace   过程   str   

原文地址:https://www.cnblogs.com/Hansue/p/11295432.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!