码迷,mamicode.com
首页 > 其他好文 > 详细

HDU 4003 (树形DP+背包)

时间:2014-10-24 16:05:01      阅读:237      评论:0      收藏:0      [点我收藏+]

标签:style   http   color   io   os   ar   for   strong   sp   

题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4003

题目大意:有K个机器人,走完树上的全部路径,每条路径有个消费。对于一个点,机器人可以出去再回来,开销2倍。也可以不回来,一直停在某个点(如果你的机器人数量足够多的话)。问最小开销。

解题思路

其实这题只能说是类树形背包。

用dp[i][j]表示在i点,有j个不回来的机器人走过的最小开销。

比如dp[i][0]就表示,i点及其子点全部靠其它点的不回来的机器人探索。所以机器人是一来一回开销2倍。

for(K...j...0) //j可以为0

  dp[i][j]+=dp[t][0]+2*e[a].w;    //表示子点t全靠其它点的机器人探索

  for(1..k....j)  //k要从1开始了,且k最大可以为j,也就是说父亲点可以是0个机器人,子点的机器人下去之后又回到子点,又去探索新的子点的子点。这样必然有父亲点0的情况。

       dp[i][j]=min(dp[i][j],dp[i][j-k]+dp[t][k]+k*e.w); //权在边的计算模板

 

#include "cstdio"
#include "vector"
#include "iostream"
#include "cstring"
using namespace std;
#define maxn 10005
struct Edge
{
    int to,next,w;
}e[maxn*2];
int dp[maxn][15],head[maxn],tol;
int n,s,K,u,v,w;
void addedge(int u,int v,int w)
{
    e[tol].to=v;
    e[tol].next=head[u];
    e[tol].w=w;
    head[u]=tol++;
}
void dfs(int root,int pre)
{
    int i=root;
    for(int a=head[root];a!=-1;a=e[a].next)
    {
        int t=e[a].to;
        if(t==pre) continue;
        dfs(t,root);
        for(int j=K;j>=0;j--)
        {
            dp[i][j]+=dp[t][0]+2*e[a].w;
            for(int k=1;k<=j;k++)
                dp[i][j]=min(dp[i][j],dp[i][j-k]+dp[t][k]+k*e[a].w);
        }
    }
}
int main()
{
    //freopen("in.txt","r",stdin);
    while(~scanf("%d%d%d",&n,&s,&K))
    {
        memset(dp,0,sizeof(dp));
        memset(head,-1,sizeof(head));
        tol=0;
        for(int i=1;i<n;i++)
        {
            scanf("%d%d%d",&u,&v,&w);
            addedge(u,v,w);
            addedge(v,u,w);
        }
        dfs(s,s);
        printf("%d\n",dp[s][K]);
    }
}

 

  

HDU 4003 (树形DP+背包)

标签:style   http   color   io   os   ar   for   strong   sp   

原文地址:http://www.cnblogs.com/neopenx/p/4048230.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!