码迷,mamicode.com
首页 > 其他好文 > 详细

sklearn.preprocessing.StandardScaler数据标准化

时间:2019-08-04 20:00:46      阅读:917      评论:0      收藏:0      [点我收藏+]

标签:get   均值   正则   训练   bsp   std   ams   line   copy   

原文链接:https://blog.csdn.net/weixin_39175124/article/details/79463993

数据在前处理的时候,经常会涉及到数据标准化。将现有的数据通过某种关系,映射到某一空间内。常用的标准化方式是,减去平均值,然后通过标准差映射到均至为0的空间内。系统会记录每个输入参数的平均数和标准差,以便数据可以还原。

很多ML的算法要求训练的输入参数的平均值是0并且有相同阶数的方差例如:RBF核的SVM,L1和L2正则的线性回归

sklearn.preprocessing.StandardScaler能够轻松的实现上述功能。

调用方式为: 
首先定义一个对象: 
ss = sklearn.preprocessing.StandardScaler(copy=True, with_mean=True, with_std=True) 
在这里 
copy; with_mean;with_std 
默认的值都是True.

copy 如果为false,就会用归一化的值替代原来的值;如果被标准化的数据不是np.array或scipy.sparse CSR matrix, 原来的数据还是被copy而不是被替代

with_mean 在处理sparse CSR或者 CSC matrices 一定要设置False不然会超内存

能够查询的属性:

scale_: 缩放比例,同时也是标准差

mean_: 每个特征的平均值

var_:每个特征的方差

n_sample_seen_:样本数量,可以通过patial_fit 增加

举个例子:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import StandardScaler
#data = pd.read_csv("C:/学习/python/creditcard/creditcard.csv")
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]).reshape((3, 3))
ss = StandardScaler()
print(x)
ss.fit(X=x)
print(ss.n_samples_seen_)
print(ss.mean_)
print(ss.var_)
print(ss.scale_)
y = ss.fit_transform(x)
print(y)
z = ss.inverse_transform(y)
print(z)

运行结果为:

技术图片

 

 

能够被调用的Methods:

fit(X,y=None):计算输入数据各特征的平均值,标准差以及之后的缩放系数 ,以后就可以按照这个数据调用transofrm()
X:训练集
y: 传入为了使得和Pipeline兼容

fit_transform(X,y=None,**fit_params): 通过fit_params调整数据X,y得到一个调整后的X ,使得每个特征的数据分布平均值为0,方差为1
X 为array:训练集 
y 为标签 
返回一个改变后的X

get_params(deep=True): 返回StandardScaler对象的设置参数,

inverse_transform(X,copy=None):顾名思义,就是按照缩放规律反向还原当前数据 

transform(X, y=’deprecated’, copy=None):基于现有的对象规则,标准化新的参数

可以认为fit_transform()是fit()和transform()的合体。

sklearn.preprocessing.StandardScaler数据标准化

标签:get   均值   正则   训练   bsp   std   ams   line   copy   

原文地址:https://www.cnblogs.com/loubin/p/11299116.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!