标签:ddl 需求 book read 指定 column nan 读取文件 默认值
# 1. 使用to_excel创建Excel文件
import pandas as pd
df = pd.DataFrame({‘id‘:[1,2,3],‘name‘:[‘zs‘,‘ls‘,‘ww‘]})
# 默认会有索引,将ID列设置成索引,会返回一个新的df,如果想要在原来的df上修改需要添加参数inplace=True
df = df.set_index(‘id‘)
df.to_excel(‘./output.xlsx‘)
print(‘end‘)
# 2. 使用pandas读取文件
import pandas as pd
# 此处需要安装依赖库xlrd
people = pd.read_excel(‘~/Desktop/People.xlsx‘)
print(‘获取文件中的行和列:‘,people.shape)
print("-"*20)
print(‘获取文件中的列名:‘,people.columns)
print("-"*20)
# 默认取前五行
print(‘获取文件中的前几行数据信息:‘,people.head())
print("-"*20)
print(‘获取文件中的后几行数据信息:‘,people.tail())
print("-"*20)
# 注意常见问题:
# 1. 读取的时候,默认会将第一行作为列名,我们可以修改
people = pd.read_excel(‘~/Desktop/People.xlsx‘,header = 1)
print(people.columns)
输出:
获取文件中的行和列: (19972, 6)
--------------------
获取文件中的列名: Index([‘ID‘, ‘Type‘, ‘Title‘, ‘FirstName‘, ‘MiddleName‘, ‘LastName‘], dtype=‘object‘)
--------------------
获取文件中的前几行数据信息: ID Type Title FirstName MiddleName LastName
0 1 Employee NaN Ken J Sánchez
1 2 Employee NaN Terri Lee Duffy
2 3 Employee NaN Roberto NaN Tamburello
3 4 Employee NaN Rob NaN Walters
4 5 Employee Ms. Gail A Erickson
--------------------
获取文件中的后几行数据信息: ID Type Title FirstName MiddleName LastName
19967 20773 Individual Customer NaN Crystal NaN Guo
19968 20774 Individual Customer NaN Isabella F Richardson
19969 20775 Individual Customer NaN Crystal S He
19970 20776 Individual Customer NaN Crystal NaN Zheng
19971 20777 Individual Customer NaN Crystal NaN Hu
--------------------
Index([1, ‘Employee‘, ‘NULL‘, ‘Ken‘, ‘J‘, ‘Sánchez‘], dtype=‘object‘)
# 2. 使用pandas读取文件
import pandas as pd
#2. 如果第一行或者其他行不满足我们的需求时,我们可以自定义
# 第一种: 设置header为None,会使用默认的01234
people = pd.read_excel(‘~/Desktop/People.xlsx‘,header = None)
print(people.columns)
print("-"*20)
print(people.head())
print("-"*20)
# 第二种: 认为的设置默认值
people.columns = [‘ID1‘,‘Type1‘,‘Title1‘,‘FirstName1‘,‘MiddleName1‘,‘LastName1‘]
print(people.columns)
print("-"*20)
print(people.head())
print("-"*20)
# 重新存储
people.set_index(‘ID1‘,inplace = True)
print(people.head())
print("-"*20)
people.to_excel(‘./People1.xlsx‘)
print(‘end‘)
print("-"*20)
# 注意读取数据的时候,会将ID1右作为一列输出出来,所以可以在读取的时候用参数指定一下
people1 = pd.read_excel(‘./People1.xlsx‘,index_col = "ID1")
print(people1.head())
输出:
Int64Index([0, 1, 2, 3, 4, 5], dtype=‘int64‘)
--------------------
0 1 2 3 4 5
0 ID Type Title FirstName MiddleName LastName
1 1 Employee NaN Ken J Sánchez
2 2 Employee NaN Terri Lee Duffy
3 3 Employee NaN Roberto NaN Tamburello
4 4 Employee NaN Rob NaN Walters
--------------------
Index([‘ID1‘, ‘Type1‘, ‘Title1‘, ‘FirstName1‘, ‘MiddleName1‘, ‘LastName1‘], dtype=‘object‘)
--------------------
ID1 Type1 Title1 FirstName1 MiddleName1 LastName1
0 ID Type Title FirstName MiddleName LastName
1 1 Employee NaN Ken J Sánchez
2 2 Employee NaN Terri Lee Duffy
3 3 Employee NaN Roberto NaN Tamburello
4 4 Employee NaN Rob NaN Walters
--------------------
Type1 Title1 FirstName1 MiddleName1 LastName1
ID1
ID Type Title FirstName MiddleName LastName
1 Employee NaN Ken J Sánchez
2 Employee NaN Terri Lee Duffy
3 Employee NaN Roberto NaN Tamburello
4 Employee NaN Rob NaN Walters
--------------------
end
--------------------
Type1 Title1 FirstName1 MiddleName1 LastName1
ID1
ID Type Title FirstName MiddleName LastName
1 Employee NaN Ken J Sánchez
2 Employee NaN Terri Lee Duffy
3 Employee NaN Roberto NaN Tamburello
4 Employee NaN Rob NaN Walters
import pandas as pd
# 指定读哪个表
sheet = pd.read_excel(‘~/Desktop/sheet.xlsx‘,sheet_name=‘sheet2‘)
print(sheet.head())
print("-"*20)
# 3. 如果数据在表格中没有顶格写时
# skiprows : 跳过几行
# usecols: 使用那几列(C,指的就是Excel上的ABCD....)
book = pd.read_excel(‘~/Desktop/Books.xlsx‘,skiprows=3,usecols ="C:F")
print(book.head())
输出:
ID age
0 0 18
1 1 19
--------------------
ID Name InStore
0 NaN Book_001 NaN
1 NaN Book_002 NaN
2 NaN Book_003 NaN
3 NaN Book_004 NaN
4 NaN Book_005 NaN
标签:ddl 需求 book read 指定 column nan 读取文件 默认值
原文地址:https://www.cnblogs.com/imcati/p/11305719.html