码迷,mamicode.com
首页 > 其他好文 > 详细

hdu多校第五场1004 (hdu6627) equation 1 计算几何

时间:2019-08-06 15:46:00      阅读:90      评论:0      收藏:0      [点我收藏+]

标签:分数   输出   几何   div   flag   ati   前缀和   sort   ==   

题意:

给你一个C,再给你n组a,b,让你求x取什么值的时候,$ \sum_{i=1}^n |a_i*x+b_i| =C $,要求求出解的个数,并用最简分数从小到大表示,如果有无穷多解,输出-1.

题解:

其实这些方程就是在平面上的一组曲线,都是V形的,最低点都在x轴上,求出所有的零点,以这个零点从左到右排序。

容易看出,这些函数之和也是一条曲线y=f(i),这条曲线最多有n个转折点,那么就在这n个转折点分出的n+1个区间内,和n个点上,用比例公式找和y=C的交点即可。无穷多解的情况是存在一条与y=C重合的线段。

首先预处理出f(i)上所有转折点的值,注意n的范围是1e5,因此不可能让你$O(n^2)$求每一点的值,其实,只需维护a与b的前缀和和后缀和,要求某点$x_k$时,将零点在此点左边的函数取正,零点在此点右边的的函数取反。

$(\sum_{i=1}^{k-1}a_i) *x_k+\sum_{i=1}^{k-1}b_i-(\sum_{i=k+1}^{n}a_i) *x_k-\sum_{i=k+1}^{n}b_i$

注意判断零点重合情况。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<stack>
#include<algorithm>
using namespace std;
typedef long long LL;
typedef long long ll;
const int M = 1e5 + 10;
const double eps = 1e-7;
const LL mod = 998244353;
const LL lINF = 0x3f3f3f3f3f3f3f3f;
struct node {
    int a, b;
}tr[M];
int t;
int n, c;
int fenzi[M], fenmu[M];
int ans;
int gcd(int a, int b)
{
    if (!b)
        return a;
    else
        return gcd(b, a % b);
}
double lst;
bool cmp(node x, node y)
{
    return x.a * y.b - x.b * y.a < 0;
}
bool cmp2(node x, node y)
{
    return (double)x.b / -x.a < (double)y.b / -y.a;
}
bool cmp1(node x, node y)
{
    return (double)x.b / -x.a <= (double)y.b / -y.a;
}
int suma[M], sumb[M];
int flag;
double nw;
double nx;
int main()
{
    scanf("%d", &t);
    while (t--)
    {
        scanf("%d%d", &n, &c);
        for (int i = 1; i <= n; i++)
        {
            scanf("%d%d", &tr[i].a, &tr[i].b);
        }
        sort(tr + 1, tr + n + 1, cmp);
        suma[0] = sumb[0] = 0;
        for (int i = 1; i <= n; i++)
        {
            suma[i] = suma[i - 1] + tr[i].a;
            sumb[i] = sumb[i - 1] + tr[i].b;
        }
        flag = ans = 0;
        lst = -10000.0;
        for (int i = 0; i <= n; i++)
        {
            int tmpa = -suma[n];
            int tmpb = -sumb[n];
            tmpa += 2 * suma[i];
            tmpb += 2 * sumb[i];
            nw = (double)sumb[i] / suma[i];
            nx = (double)sumb[i + 1] / suma[i + 1];
            if (fabs(nw - nx) < eps)
                continue;
            if (!tmpa && tmpb == c)
            {
                flag = 1;
                break;
            }
            if (!i)
            {
                node tmpc;
                tmpc.a = tmpa, tmpc.b = tmpb - c;
                if (cmp1(tmpc, tr[1]))
                {
                    fenzi[ans] = -tmpc.b;
                    fenmu[ans] = tmpa;
                    int d = gcd(fenzi[ans], fenmu[ans]);
                    fenzi[ans] /= d;
                    fenmu[ans] /= d;
                    if (fenmu[ans] < 0)
                    {
                        fenzi[ans] = -fenzi[ans], fenmu[ans] = -fenmu[ans];
                    }
                    ans++;
                }
            }
            else if (i == n)
            {
                node tmpc;
                tmpc.a = tmpa, tmpc.b = tmpb - c;
                if (cmp2(tr[n], tmpc))
                {
                    fenzi[ans] = -tmpc.b;
                    fenmu[ans] = tmpa;
                    int d = gcd(fenzi[ans], fenmu[ans]);
                    fenzi[ans] /= d;
                    fenmu[ans] /= d;
                    if (fenmu[ans] < 0)
                    {
                        fenzi[ans] = -fenzi[ans], fenmu[ans] = -fenmu[ans];
                    }
                    ans++;
                }
            }
            else
            {
                node tmpc;
                tmpc.a = tmpa, tmpc.b = tmpb - c;
                if (cmp2(tr[i], tmpc) && cmp1(tmpc, tr[i + 1]))
                {
                    fenzi[ans] = -tmpc.b;
                    fenmu[ans] = tmpa;
                    int d = gcd(fenzi[ans], fenmu[ans]);
                    fenzi[ans] /= d;
                    fenmu[ans] /= d;
                    if (fenmu[ans] < 0)
                    {
                        fenzi[ans] = -fenzi[ans], fenmu[ans] = -fenmu[ans];
                    }
                    ans++;
                }
            }
            lst = (double)(tmpb - c) / tmpa;
        }
        if (flag)
        {
            printf("-1\n");
        }
        else
        {
            printf("%d", ans);
            for (int i = 0; i < ans; i++)
            {
                printf(" %d/%d", fenzi[i], fenmu[i]);
            }
            puts("");
        }
    }
}

 

hdu多校第五场1004 (hdu6627) equation 1 计算几何

标签:分数   输出   几何   div   flag   ati   前缀和   sort   ==   

原文地址:https://www.cnblogs.com/isakovsky/p/11309173.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!