标签:学习 port 标准 clone backward 示例 out sel 输入数据
1 import torch 2 from torch.autograd import Variable 3 batch_n = 100 #一个批次中输入数据的数量 4 hidden_layer = 100 5 input_data = 1000 #每个数据包含特征数量 6 output_data = 10 7 8 class Model(torch.nn.Module): 9 10 def __init__(self): 11 super(Model,self).__init__() 12 13 def forward(self,input,w1,w2): 14 x = torch.mm(input,w1) 15 x = torch.clamp(x, min=0) 16 x = torch.mm(x,w2) 17 return x 18 19 def backward(self): 20 pass 21 22 23 # x = torch.randn(batch_n, input_data) #示例输入(方法一) 24 # y = torch.randn(batch_n, output_data) #标准输出 25 x = Variable(torch.randn(batch_n,input_data),requires_grad = False) #方法二、三 26 y = Variable(torch.randn(batch_n,output_data),requires_grad = False) 27 28 # w1 = torch.randn(input_data, hidden_layer) #权重(方法一) 29 # w2 = torch.randn(hidden_layer, output_data) 30 w1 = Variable(torch.randn(input_data,hidden_layer),requires_grad = True) #方法二、三 31 w2 = Variable(torch.randn(hidden_layer,output_data),requires_grad= True) 32 33 epoch_n = 30 #步数 34 learning_rate = 1e-6 #学习率 35 36 model = Model() 37 38 for epoch in range(epoch_n): 39 # y_pred= x.mm(w1).clamp(min=0).mm(w2) 40 y_pred = model(x,w1,w2) 41 loss = (y_pred - y).pow(2).sum() #损失函数 42 # print("Epoch:{ }, Loss:{:.4f}",format(epoch,loss)) 43 print("Epoch:",epoch, " Loss:",loss.item()) 44 45 # 反向传播 方法一:手动计算梯度,更新权值 46 # grad_y_pred = 2*(y_pred - y) 47 # grad_w2 = h1.t().mm(grad_y_pred) 48 # 49 # grad_h = grad_y_pred.clone() 50 # grad_h = grad_h.mm(w2.t()) 51 # grad_h.clamp_(min=0) 52 # grad_w1 = x.t().mm(grad_h) 53 # 54 # w1 -= learning_rate*grad_w1 55 # w2 -= learning_rate*grad_w2 56 57 # 反向传播 方法二:自动梯度 58 loss.backward() 59 60 w1.data -= learning_rate*w1.grad 61 w2.data -= learning_rate*w2.grad 62 63 w1.grad.data.zero_() 64 w2.grad.data.zero_()
标签:学习 port 标准 clone backward 示例 out sel 输入数据
原文地址:https://www.cnblogs.com/RaspberryFarmer/p/10348742.html