码迷,mamicode.com
首页 > 其他好文 > 详细

【432】COMP9024,Exercise9

时间:2019-08-14 14:33:59      阅读:80      评论:0      收藏:0      [点我收藏+]

标签:path   NPU   number   raw   which   har   -name   ram   class   

eulerianCycle.c

  1. What determines whether a graph is Eulerian or not?
  2. Write a C program that reads a graph, prints the graph, and determines whether an input graph is Eulerian or not.
    • if the graph is Eulerian, the program prints an Eulerian path
      • you should start with vertex 0
      • note that you may use the function findEulerianCycle() from the lecture on Graph Search Applications

    • if it is not Eulerian, the program prints the message Not Eulerian

For example,

  • The graph:
      #4
      0 1 0 2 0 3 1 2 2 3

    is not Eulerian (can you see why?). Using this as input, your program should output:

      V=4, E=5
      <0 1> <0 2> <0 3> 
      <1 0> <1 2> 
      <2 0> <2 1> <2 3> 
      <3 0> <3 2> 
      Not Eulerian
  • In the above-named lecture I showed a ‘concentric squares‘ graph (called concsquares):

      #8
      0 7 7 5 5 1 1 0
      6 0 6 7
      2 5 2 7
      4 1 4 5
      3 0 3 1
    which is Eulerian, although I‘ve labelled the vertices differently here. For this input your program should produce the output:
      V=8, E=12
      <0 1> <0 3> <0 6> <0 7> 
      <1 0> <1 3> <1 4> <1 5> 
      <2 5> <2 7> 
      <3 0> <3 1> 
      <4 1> <4 5> 
      <5 1> <5 2> <5 4> <5 7> 
      <6 0> <6 7> 
      <7 0> <7 2> <7 5> <7 6> 
      Eulerian cycle: 0 1 4 5 2 7 5 1 3 0 6 7 0 

    Draw concsquares, label it as given in the input file above, and check the cycle is indeed Eulerian.

  • The function findEulerCycle() in the lecture notes does not handle disconnected graphs. In a disconnected Eulerian graph, each subgraph has an Eulerian cycle.

    • Modify this function to handle disconnected graphs.
    • With this change, your program should now work for the graph consisting of 2 disconnected triangles:
         #6
         0 1 0 2 1 2 3 4 3 5 4 5
      It should now find 2 Eulerian paths:
         V=6, E=6
         <0 1> <0 2> 
         <1 0> <1 2> 
         <2 0> <2 1> 
         <3 4> <3 5> 
         <4 3> <4 5> 
         <5 3> <5 4> 
         Eulerian cycle: 0 1 2 0 
         Eulerian cycle: 3 4 5 3

思路:经过一条边就删掉一个,通过遍历查找是否遍历完(针对不连通的graph)

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include "Graph.h"
#include "Quack.h"

#define UNVISITED -1
#define WHITESPACE 100

void dfsR(Graph g, Vertex v, int numV, int *order, int *visited);
Vertex getAdjacent(Graph g, int numV, Vertex v);

int readNumV(void) { // returns the number of vertices numV or -1
   int numV;
   char w[WHITESPACE];
   scanf("%[ \t\n]s", w);  // skip leading whitespace
   if ((getchar() != ‘#‘) ||
       (scanf("%d", &numV) != 1)) {
       fprintf(stderr, "missing number (of vertices)\n");
       return -1;
   }
   return numV;
}

int readGraph(int numV, Graph g) { // reads number-number pairs until EOF
   int success = true;             // returns true if no error
   int v1, v2;
   while (scanf("%d %d", &v1, &v2) != EOF && success) {
       if (v1 < 0 || v1 >= numV || v2 < 0 || v2 >= numV) {
          fprintf(stderr, "unable to read edge\n");
          success = false;
       }
       else {
          insertE(g, newE(v1, v2));
       }
   }
   return success;
}

void findEulerCycle(Graph g, int numV, Vertex startv) {
   Quack s = createQuack();
   push(startv, s);
   
   int allVis = 0;
   while (!allVis) {
   	   printf("Eulerian cycle: ");
	   while (!isEmptyQuack(s)) {
		  Vertex v = pop(s); // v is the top of stack vertex and ...
		  push(v, s);        // ... the stack has not changed
		  Vertex w;
		  if ((w = getAdjacent(g, numV, v)) >= 0) {
		     push(w, s);     // push a neighbour of v onto stack
		     removeE(g, newE(v, w)); // remove edge to neighbour
		  }
		  else {
		     w = pop(s);
		     printf("%d ", w);
		  }
	   }
	   printf("\n");
	   allVis = 1;

	   for (Vertex v = 0; v < numV && allVis; v++) {
	   	  for (Vertex w = 0; w < numV && allVis; w++) {
	   	  	 if (isEdge(g, newE(v, w))) {
	   	  	 	allVis = 0;
	   	  	 	push(v, s);
	   	  	 }
	   	  }
	   }
   }
}

Vertex getAdjacent(Graph g, int numV, Vertex v) {
   // returns the Largest Adjacent Vertex if it exists, else -1
   Vertex w;
   Vertex lav = -1; // the adjacent vertex
   for (w=numV-1; w>=0 && lav==-1; w--) {
      Edge e = newE(v, w);
      if (isEdge(g, e)) {
         lav = w;
      }
   }
   return lav;
}

int isEulerian(Graph g, int numV) {
	int count = 0;
	for (Vertex w = 0; w < numV; w++) {
		count = 0;
		for (Vertex v = 0; v < numV; v++) {
			if (isEdge(g, newE(w, v))) {
				count++;
			}
		}
		if (count % 2 != 0) {
			return 0;
		}
	}
	return 1;
}


int main (void) { 
    int numV;
    if ((numV = readNumV()) >= 0) {
        Graph g = newGraph(numV);
        if (readGraph(numV, g)) {
        	showGraph(g);
        	
        	if(isEulerian(g, numV)) {
        		findEulerCycle(g, numV, 0);
        	}
        	else {
        		printf("Not Eulerian\n");
        	}
        }
    }
    else {
        return EXIT_FAILURE;
    }
    return EXIT_SUCCESS;
}

// clear && gcc dfs_EulerCycle.c GraphAM.c Quack.c && ./a.out < input_1.txt

// clear && gcc dfs_EulerCycle.c GraphAM.c Quack.c && ./a.out < input_2.txt

// clear && gcc dfs_EulerCycle.c GraphAM.c Quack.c && ./a.out < input_3.txt

 

【432】COMP9024,Exercise9

标签:path   NPU   number   raw   which   har   -name   ram   class   

原文地址:https://www.cnblogs.com/alex-bn-lee/p/11351524.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!