码迷,mamicode.com
首页 > 其他好文 > 详细

Hive基本操作

时间:2019-08-15 13:05:17      阅读:80      评论:0      收藏:0      [点我收藏+]

标签:outer   matching   exp   基本操作   join   sts   ike   distinct   HERE   

 
HIVE基本操作:
 
本地运行
set hive.exec.mode.local.auto=true;
 
创建表:
hive> CREATE TABLE pokes (foo INT, bar STRING);
Creates a table called pokes with two columns, the first being an integer and the other a string
 
创建一个新表,结构与其他一样
hive> create table new_table like records;
 
创建分区表:
hive> create table logs(ts bigint,line string) partitioned by (dt String,country String);
 
加载分区表数据:
hive> load data local inpath ‘/hive/hadoop/input/hive/partitions/file1‘ into table logs partition (dt=‘2011-01-01‘,country=‘GB‘);
 
展示表中有多少分区:
hive> show partitions logs;
 
展示所有表:
hive> SHOW TABLES;
lists all the tables
hive> SHOW TABLES ‘.*s‘;
 
lists all the table that end with ‘s‘. The pattern matching follows Java regular
expressions. Check out this link for documentation
 
显示表的结构信息
hive> DESCRIBE invites;
DESC TABLE_NAME
shows the list of columns
 
更新表的名称:
hive> ALTER TABLE source RENAME TO target;
 
添加新一列
hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT ‘a comment‘);
 
删除表:
hive> DROP TABLE records;
删除表中数据,但要保持表的结构定义
hive> dfs -rmr /user/hive/warehouse/records;
 
从本地文件加载数据:
hive> LOAD DATA LOCAL INPATH ‘/hive/hadoop/input/ncdc/micro-tab/sample.txt‘ OVERWRITE INTO TABLE records;
 
显示所有函数:
hive> show functions;
 
查看函数用法:
hive> describe function substr;
 
查看数组、map、结构
hive> select col1[0],col2[‘b‘],col3.c from complex;
 
 
内连接:
hive> SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
 
查看hive为某个查询使用多少个MapReduce作业
hive> Explain SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
 
外连接:
hive> SELECT sales.*, things.* FROM sales LEFT OUTER JOIN things ON (sales.id = things.id);
hive> SELECT sales.*, things.* FROM sales RIGHT OUTER JOIN things ON (sales.id = things.id);
hive> SELECT sales.*, things.* FROM sales FULL OUTER JOIN things ON (sales.id = things.id);
 
in查询:Hive不支持,但可以使用LEFT SEMI JOIN
hive> SELECT * FROM things LEFT SEMI JOIN sales ON (sales.id = things.id);
 
 
Map连接:Hive可以把较小的表放入每个Mapper的内存来执行连接操作
hive> SELECT /*+ MAPJOIN(things) */ sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
 
INSERT OVERWRITE TABLE ..SELECT:新表预先存在
hive> FROM records2
> INSERT OVERWRITE TABLE stations_by_year SELECT year, COUNT(DISTINCT station) GROUP BY year
> INSERT OVERWRITE TABLE records_by_year SELECT year, COUNT(1) GROUP BY year
> INSERT OVERWRITE TABLE good_records_by_year SELECT year, COUNT(1) WHERE temperature != 9999 AND (quality = 0 OR quality = 1 OR quality = 4 OR quality = 5 OR quality = 9) GROUP BY year;
 
CREATE TABLE ... AS SELECT:新表表预先不存在
hive> CREATE TABLE target AS SELECT col1,col2 FROM source;不只是复制表结构,数据也来了
 
创建视图:
hive> CREATE VIEW valid_records AS SELECT * FROM records2 WHERE temperature !=9999;
 
查看视图详细信息:
hive> DESCRIBE EXTENDED valid_records;

Hive基本操作

标签:outer   matching   exp   基本操作   join   sts   ike   distinct   HERE   

原文地址:https://www.cnblogs.com/dasiji/p/11356942.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!