码迷,mamicode.com
首页 > 其他好文 > 详细

小目标识别——调研

时间:2019-08-17 19:41:22      阅读:83      评论:0      收藏:0      [点我收藏+]

标签:details   测试   学习   数据分布   尺寸   developer   eve   ref   索引   

1、小目标所占像素的问题

一种是相对尺寸大小,如目标尺寸的长宽是原图像尺寸的0.1,即可认为是小目标;
另外一种是绝对尺寸的定义,即尺寸小于32*32像素的目标即可认为是小目标。

 

摘要 小目标是指图像中覆盖区域较小的一类目标.与常规目标相比,小目标信息量少,训练数据难以标记,这导致通用的目标检测方法对小目标的检测效果不好,而专门为小目标设计的检测方法往往复杂度过高或不具有通用性.在分析现有目标检测方法的基础上,提出了一种面向小目标的多尺度快速区域卷积神经网络(faster-regions with convolutional neural network, Faster-RCNN)检测算法.根据卷积神经网络的特性,修改了Faster-RCNN的网络结构,使网络可以同时使用低层和高层的特征进行多尺度目标检测,提升了以低层特征为主要检测依据的小目标检测任务的精度.同时,针对训练数据难以标记的问题,使用从搜索引擎上获取的数据来训练模型.因为这些训练数据与任务测试数据分布不同,又利用下采样和上采样的方法对目标高分辨率的训练图像进行转化,使训练图像和测试图像的特征分布更类似.实验结果表明:所提出的方法在小目标检测任务上的平均精度均值(mean average precision, mAP)可以比原始的Faster-RCNN提高约5%.

http://crad.ict.ac.cn/CN/abstract/abstract3866.shtml

面向小目标的多尺度Faster-RCNN检测算法

 

faster-rcnn原理介绍 - Lin_xiaoyi的博客 - CSDN博客 https://blog.csdn.net/Lin_xiaoyi/article/details/78214874

 

2、算法识别率

深度学习第24讲:计算机视觉之目标检测算法综述 - 云+社区 - 腾讯云 https://cloud.tencent.com/developer/news/302362

技术图片

技术图片

技术图片

 

小目标识别——调研

标签:details   测试   学习   数据分布   尺寸   developer   eve   ref   索引   

原文地址:https://www.cnblogs.com/wxl845235800/p/11369711.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!