码迷,mamicode.com
首页 > 其他好文 > 详细

D 【BJOI2018】求和

时间:2019-08-18 17:28:36      阅读:75      评论:0      收藏:0      [点我收藏+]

标签:输出   操作   limit   mitm   生成   get   不同   div   type   

时间限制 : 20000 MS   空间限制 : 565536 KB
评测说明 : 2s,512m
问题描述

master 对树上的求和非常感兴趣。他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k次方和,而且每次的k 可能是不同的。此处节点深度的定义是这个节点到根的路径上的边数。他把这个问题交给了pupil,但pupil 并不会这么复杂的操作,你能帮他解决吗?

输入格式

第一行包含一个正整数n ,表示树的节点数。

之后n-1 行每行两个空格隔开的正整数i,j ,表示树上的一条连接点i 和点j 的边。

之后一行一个正整数m ,表示询问的数量。

之后每行三个空格隔开的正整数i,j,k ,表示询问从点i 到点j 的路径上所有节点深度的k 次方和。由于这个结果可能非常大,输出其对998244353 取模的结果。

树的节点从1 开始标号,其中1 号节点为树的根。

输出格式

对于每组数据输出一行一个正整数表示取模后的结果。

样例输入

5
1 2
1 3
2 4
2 5
2
1 4 5
5 4 45

样例输出

33
503245989

提示

对于30%的数据,1≤n,m≤100;

对于60%的数据,1≤n,m≤1000;

对于100%的数据,1≤n,m≤300000,1≤k≤50。

 

样例解释
以下用d(i) 表示第i 个节点的深度。
对于样例中的树,有d(1)=0,d(2)=1,d(3)=1,d(4)=2,d(5)=2。
因此第一个询问答案为(2^5 + 1^5 + 0^5) mod 998244353 = 33
第二个询问答案为(2^45 + 1^45 + 2^45) mod 998244353 = 503245989。


D 【BJOI2018】求和

标签:输出   操作   limit   mitm   生成   get   不同   div   type   

原文地址:https://www.cnblogs.com/Limbo-To-Heaven/p/11372889.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!