码迷,mamicode.com
首页 > 其他好文 > 详细

微生物来源分析

时间:2019-08-19 19:08:40      阅读:531      评论:0      收藏:0      [点我收藏+]

标签:uml   fse   adr   钢铁侠   扫描   otp   设置   bbb   nio   

微生物来源分析

写在前面

最近由于老板有分析项目,我实在是进展缓慢,一直苦恼并艰难的探索和进展,所以很长时间没有和大家见面了,今天我为大家带来的source tracker分析,使用前一段时间刚出来的工具FEAST。

技术图片

刘老师对这片文章进行了详细的解读:
Nature Methods:快速准确的微生物来源追溯工具FEAST。跟着刘老师的步伐,今天我对这个工具进行一个尝试。为什么作者不将这个工具封装到R包呢这样不就更容易了吗?可能好多小伙伴都没有从github上克隆过项目。

准备

不仅仅是这一次,我在之后全部的分析都会将整个群落封装到phylsoeq,只是为了更好的更加灵活的对微生物群落数据进行分析,当然大家如果初次见面,可能需要安装依赖极多的phyloseq包。需要熟悉phylsoeq封装的结构和调用方法。

为了让大家更容易操作,我把数据保存为csv,方便尚未解除phylsoeq的小伙伴进行无压力测试。

微生物来源分析

FEAST提供两种方式来做微生物来源分析。

  1. 基于单个目标的来源。单个样品的来分析。
    2.基于多个目标和多个来源。多个样品进行来源分析。

首先我们来演示基于单个目标样品和来源样品的来源分析

```{r cars1212}

rm(list = ls())

gc()

path = "./phyloseq_7_source_FEAST"
dir.create(path)

导入主函数

source("./FEAST-master/FEAST_src//src.R")

ps = readRDS("./a3_DADA2_table/ps_OTU_.ps")

导入分组文件和OTU表格

metadata <- as.data.frame(sample_data(ps))
head(metadata)

write.csv(metadata,"metadata.csv",quote = F)

Load OTU table

vegan_otu <- function(physeq){
OTU <- otu_table(physeq)
if(taxa_are_rows(OTU)){
OTU <- t(OTU)
}
return(as(OTU,"matrix"))
}
otus <- as.data.frame(t(vegan_otu(ps)))
write.csv(otus,"otus.csv",quote = F)
otus <- t(as.matrix(otus))

下面区分目标样品和来源样品。

envs <- metadata$SampleType

metadata<- arrange(metadata, SampleType)
metadata$id = rep(1:6,4)
Ids <- na.omit(unique(metadata$id))
it = 1

train.ix <- which(metadata$SampleType%in%c("B","C","D")& metadata$id == Ids[it])
test.ix <- which(metadata$SampleType==‘A‘ & metadata$id == Ids[it])

Extract the source environments and source/sink indices

num_sources <- length(train.ix) #number of sources
COVERAGE = min(rowSums(otus[c(train.ix, test.ix),])) #Can be adjusted by the user

对两组样品进行抽平

sources <- as.matrix(rarefy(otus[train.ix,], COVERAGE))
sinks <- as.matrix(rarefy(t(as.matrix(otus[test.ix,])), COVERAGE))

dim(sinks)
print(paste("Number of OTUs in the sink sample = ",length(which(sinks > 0))))
print(paste("Seq depth in the sources and sink samples = ",COVERAGE))
print(paste("The sink is:", envs[test.ix]))

Estimate source proportions for each sink

EM_iterations = 1000 # number of EM iterations. default value

FEAST_output<-FEAST(source=sources, sinks = t(sinks), env = envs[train.ix], em_itr = EM_iterations, COVERAGE = COVERAGE)
Proportions_est <- FEAST_output$data_prop[,1]
names(Proportions_est) <- c(as.character(envs[train.ix]), "unknown")

print("Source mixing proportions")
Proportions_est
round(Proportions_est,3)

```
技术图片

就正常样品而言,我们都会测定重复,这里基于多个样品的sourceracker分析

基于多个目标和来源的微生物来源分析:
different_sources_flags设置目标样品和来源样品的对应关系。是否不同目标对应不同来源样品,还是不同目标对应相同来源样品

```{r more step}

导入主函数

source("./FEAST-master/FEAST_src//src.R")

ps = readRDS("./a3_DADA2_table/ps_OTU_.ps")

导入分组文件和OTU表格

metadata <- as.data.frame(sample_data(ps))
head(metadata)

Load OTU table

vegan_otu <- function(physeq){
OTU <- otu_table(physeq)
if(taxa_are_rows(OTU)){
OTU <- t(OTU)
}
return(as(OTU,"matrix"))
}
otus <- as.data.frame(t(vegan_otu(ps)))
otus <- t(as.matrix(otus))

head(metadata)

metadata<- arrange(metadata, SampleType)
metadata$id = rep(1:6,4)
EM_iterations = 1000 #default value
different_sources_flag = 1

envs <- metadata$SampleType
Ids <- na.omit(unique(metadata$id))
Proportions_est <- list()
it = 1

for(it in 1:length(Ids)){

# Extract the source environments and source/sink indices
if(different_sources_flag == 1){

train.ix <- which(metadata$SampleType%in%c("B","C","D")& metadata$id == Ids[it])
test.ix <- which(metadata$SampleType=='A'  & metadata$id == Ids[it])

}

else{

train.ix <- which(metadata$SampleType%in%c("B","C","D"))
test.ix <- which(metadata$SampleType=='A' & metadata$id == Ids[it])

}

num_sources <- length(train.ix)
COVERAGE = min(rowSums(otus[c(train.ix, test.ix),])) #Can be adjusted by the user

# Define sources and sinks

sources <- as.matrix(rarefy(otus[train.ix,], COVERAGE))
sinks <- as.matrix(rarefy(t(as.matrix(otus[test.ix,])), COVERAGE))

print(paste("Number of OTUs in the sink sample = ",length(which(sinks > 0))))
print(paste("Seq depth in the sources and sink samples = ",COVERAGE))
print(paste("The sink is:", envs[test.ix]))

# Estimate source proportions for each sink

FEAST_output<-FEAST(source=sources, sinks = t(sinks), env = envs[train.ix], em_itr = EM_iterations, COVERAGE = COVERAGE)
Proportions_est[[it]] <- FEAST_output$data_prop[,1]

names(Proportions_est[[it]]) <- c(as.character(envs[train.ix]), "unknown")

if(length(Proportions_est[[it]]) < num_sources +1){

tmp = Proportions_est[[it]]
Proportions_est[[it]][num_sources] = NA
Proportions_est[[it]][num_sources+1] = tmp[num_sources]

}

print("Source mixing proportions")
print(Proportions_est[[it]])

}

print(Proportions_est)

went = as.data.frame(Proportions_est)
colnames(went) = paste("repeat_",unique(metadata$id),sep = "")
head(went)

filename = paste(path,"/FEAST.csv",sep = "")
write.csv(went,filename,quote = F)

```
技术图片

出图,简单出一张饼图供大家参考

```{r ming}

library(RColorBrewer)
library(dplyr)
library(graphics)

head(went)

plotname = paste(path,"/FEAST.pdf",sep = "")
pdf(file = plotname,width = 12,height = 12)
par(mfrow=c((length(unique(metadata$SampleType))%/%2 +2 ),2), mar=c(1,1,1,1))

layouts = as.character(unique(metadata$SampleType))

for (i in 1:length(colnames(went))) {

labs <- paste0(row.names(went)," \n(", round(went[,i]/sum(went[,i])*100,2), "%)")

pie(went[,i],labels=labs, init.angle=90,col = brewer.pal(nrow(went), "Reds"),
border="black",main =colnames(went)[i] )
}

dev.off()

```
技术图片

技术图片

基于多个重复,我们合并饼图展示

我们作为生物可能测定9个以上重复了,如果展示九个饼图,那就显得太夸张了,求均值,展示均值饼图

```{r cars123}
head(went)

asx = as.data.frame(rowMeans(went))

asx = as.matrix(asx)
asx_norm = t(t(asx)/colSums(asx)) #* 100 # normalization to total 100
head(asx_norm)

plotname = paste(path,"/FEAST_mean.pdf",sep = "")
pdf(file = plotname,width = 6,height = 6)
labs <- paste0(row.names(asx_norm)," \n(", round(asx_norm[,1]/sum(asx_norm[,1])*100,2), "%)")

pie(asx_norm[,1],labels=labs, init.angle=90,col = brewer.pal(nrow(went), "Reds"),
border="black",main = "mean of source tracker")
dev.off()

```

技术图片

欢迎加入微生信生物讨论群,扫描下方二维码添加小编微信,小编带你入伙啦,大牛如云,让交流变得简单。

技术图片

历史目录

R语言分析技术

  1. 《扩增子16s核心OTU挑选-基于otu_table的UpSet和韦恩图》
  2. 《分类堆叠柱状图顺序排列及其添加合适条块标签》
  3. 《R语言绘制带有显著性字母标记的柱状图》
  4. 《使用R实现批量方差分析(aov)和多重比较(LSD)》
  5. Rstudio切换挂载R版本及本地安装一些包
  6. 玩转R包
  7. 用ggplot画你们心中的女神
  8. ggplot版钢铁侠
  9. 想用ggplot做一张致谢ppt,但是碰到了520,画风就变了

扩增子专题

  1. 《16s分析之Qiime数据整理+基础多样性分析》
  2. 《16s分析之差异展示(热图)》
  3. 迅速提高序列拼接效率,得到后续分析友好型输入,依托qiime
  4. https://mp.weixin.qq.com/s/6zuB9JKYvDtlomtAlxSmGw》
  5. 16s分析之网络分析一(MENA)
  6. 16s分析之进化树+差异分析(一)
  7. 16s分析之进化树+差异分析(二)
  8. Qiime2学习笔记之Qiime2网站示例学习笔记
  9. PCA原理解读
  10. PCA实战
  11. 16s分析之LEfSe分析
  12. 16s分析之FishTaco分析
  13. PICRUSt功能预测又被爆出新的问题啦!

基于phyloseq的微生物群落分析

  1. 开年工作第一天phyloseq介绍

  2. phyloseq入门
  3. R语言微生物群落数据分析:从原始数据到结果(No1)
  4. R语言微生物群落数据分析:从原始数据到结果(No2))
  5. phyloseq进化树可视化
  6. 基于phyloseq的排序分析

代谢组专题

  1. 非靶向代谢组学数据分析连载(第零篇引子)
  2. 非靶向代谢组学分析连载(第一篇:缺失数据处理、归一化、标准化)

当科研遇见python

1.当科研遇见python

科学知识图谱

1.citespace 的基本术语与下载安装

杂谈

  1. 我的生物信息之路
  2. graphlan进一步学习笔记之进化树
  3. 如约 为大家带来了graphlan的物种分类树

微生物来源分析

标签:uml   fse   adr   钢铁侠   扫描   otp   设置   bbb   nio   

原文地址:https://www.cnblogs.com/wentaomicro/p/11378682.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!