标签:mahout mapreduce hadoop maven
阅读导读:
~ D:\workspace\java>mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes -DgroupId=org.conan.mymahout -DartifactId=myMahout -DpackageName=org.conan.mymahout -Dversion=1.0-SNAPSHOT -DinteractiveMode=false
~ D:\workspace\java>cd myMahout ~ D:\workspace\java\myMahout>mvn clean install
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>org.conan.mymahout</groupId> <artifactId>myMahout</artifactId> <packaging>jar</packaging> <version>1.0-SNAPSHOT</version> <name>myMahout</name> <url>http://maven.apache.org</url> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <mahout.version>0.6</mahout.version> </properties> <dependencies> <dependency> <groupId>org.apache.mahout</groupId> <artifactId>mahout-core</artifactId> <version>${mahout.version}</version> </dependency> <dependency> <groupId>org.apache.mahout</groupId> <artifactId>mahout-integration</artifactId> <version>${mahout.version}</version> <exclusions> <exclusion> <groupId>org.mortbay.jetty</groupId> <artifactId>jetty</artifactId> </exclusion> <exclusion> <groupId>org.apache.cassandra</groupId> <artifactId>cassandra-all</artifactId> </exclusion> <exclusion> <groupId>me.prettyprint</groupId> <artifactId>hector-core</artifactId> </exclusion> </exclusions> </dependency> </dependencies> </project>
~ mvn clean install
~ mkdir datafile ~ vi datafile/item.csv 1,101,5.0 1,102,3.0 1,103,2.5 2,101,2.0 2,102,2.5 2,103,5.0 2,104,2.0 3,101,2.5 3,104,4.0 3,105,4.5 3,107,5.0 4,101,5.0 4,103,3.0 4,104,4.5 4,106,4.0 5,101,4.0 5,102,3.0 5,103,2.0 5,104,4.0 5,105,3.5 5,106,4.0
package org.conan.mymahout.recommendation; import java.io.File; import java.io.IOException; import java.util.List; import org.apache.mahout.cf.taste.common.TasteException; import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator; import org.apache.mahout.cf.taste.impl.model.file.FileDataModel; import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood; import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender; import org.apache.mahout.cf.taste.impl.similarity.EuclideanDistanceSimilarity; import org.apache.mahout.cf.taste.model.DataModel; import org.apache.mahout.cf.taste.recommender.RecommendedItem; import org.apache.mahout.cf.taste.recommender.Recommender; import org.apache.mahout.cf.taste.similarity.UserSimilarity; public class UserCF { final static int NEIGHBORHOOD_NUM = 2; final static int RECOMMENDER_NUM = 3; public static void main(String[] args) throws IOException, TasteException { String file = "datafile/item.csv"; DataModel model = new FileDataModel(new File(file)); UserSimilarity user = new EuclideanDistanceSimilarity(model); NearestNUserNeighborhood neighbor = new NearestNUserNeighborhood(NEIGHBORHOOD_NUM, user, model); Recommender r = new GenericUserBasedRecommender(model, neighbor, user); LongPrimitiveIterator iter = model.getUserIDs(); while (iter.hasNext()) { long uid = iter.nextLong(); List list = r.recommend(uid, RECOMMENDER_NUM); System.out.printf("uid:%s", uid); for (RecommendedItem ritem : list) { System.out.printf("(%s,%f)", ritem.getItemID(), ritem.getValue()); } System.out.println(); } } }
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. uid:1(104,4.274336)(106,4.000000) uid:2(105,4.055916) uid:3(103,3.360987)(102,2.773169) uid:4(102,3.000000) uid:5
~ vi datafile/randomData.csv -0.883033363823402,-3.31967192630249 -2.39312626419456,3.34726861118871 2.66976353341256,1.85144276077058 -1.09922906899594,-6.06261735207489 -4.36361936997216,1.90509905380532 -0.00351835125495037,-0.610105996559153 -2.9962958796338,-3.60959839525735 -3.27529418132066,0.0230099799641799 2.17665594420569,6.77290756817957 -2.47862038335637,2.53431833167278 5.53654901906814,2.65089785582474 5.66257474538338,6.86783609641077 -0.558946883114376,1.22332819416237 5.11728525486132,3.74663871584768 1.91240516693351,2.95874731384062 -2.49747101306535,2.05006504756875 3.98781883213459,1.00780938946366
x1<-cbind(x=rnorm(400,1,3),y=rnorm(400,1,3)) x2<-cbind(x=rnorm(300,1,0.5),y=rnorm(300,0,0.5)) x3<-cbind(x=rnorm(300,0,0.1),y=rnorm(300,2,0.2)) x<-rbind(x1,x2,x3) write.table(x,file="randomData.csv",sep=",",row.names=FALSE,col.names=FALSE)
package org.conan.mymahout.cluster06; import java.io.IOException; import java.util.ArrayList; import java.util.List; import org.apache.mahout.clustering.kmeans.Cluster; import org.apache.mahout.clustering.kmeans.KMeansClusterer; import org.apache.mahout.common.distance.EuclideanDistanceMeasure; import org.apache.mahout.math.Vector; public class Kmeans { public static void main(String[] args) throws IOException { List sampleData = MathUtil.readFileToVector("datafile/randomData.csv"); int k = 3; double threshold = 0.01; List randomPoints = MathUtil.chooseRandomPoints(sampleData, k); for (Vector vector : randomPoints) { System.out.println("Init Point center: " + vector); } List clusters = new ArrayList(); for (int i = 0; i < k; i++) { clusters.add(new Cluster(randomPoints.get(i), i, new EuclideanDistanceMeasure())); } List<List> finalClusters = KMeansClusterer.clusterPoints(sampleData, clusters, new EuclideanDistanceMeasure(), k, threshold); for (Cluster cluster : finalClusters.get(finalClusters.size() - 1)) { System.out.println("Cluster id: " + cluster.getId() + " center: " + cluster.getCenter().asFormatString()); } } }
Init Point center: {0:-0.162693685149196,1:2.19951550286862} Init Point center: {0:-0.0409782183083317,1:2.09376666042057} Init Point center: {0:0.158401778474687,1:2.37208412905273} SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. Cluster id: 0 center: {0:-2.686856800552941,1:1.8939462954763795} Cluster id: 1 center: {0:0.6334255423230666,1:0.49472852972602105} Cluster id: 2 center: {0:3.334520309711998,1:3.2758355898247653}
> y<-read.csv(file="randomData.csv",sep=",",header=FALSE) > cl<-kmeans(y,3,iter.max = 10, nstart = 25) > cl$centers V1 V2 1 -0.4323971 2.2852949 2 0.9023786 -0.7011153 3 4.3725463 2.4622609 # 生成聚类中心的图形 > plot(y, col=c("black","blue","green")[cl$cluster]) > points(cl$centers, col="red", pch = 19) # 画出Mahout聚类的中心 > mahout<-matrix(c(-2.686856800552941,1.8939462954763795,0.6334255423230666,0.49472852972602105,3.334520309711998,3.2758355898247653),ncol=2,byrow=TRUE) > points(mahout, col="violetred", pch = 19)
标签:mahout mapreduce hadoop maven
原文地址:http://blog.csdn.net/u013361361/article/details/40451329