标签:gaussian code fit analysis san ima panda sklearn report
# -*- coding: utf-8 -*- import pandas as pd import matplotlib matplotlib.rcParams[‘font.sans-serif‘]=[u‘simHei‘] matplotlib.rcParams[‘axes.unicode_minus‘]=False from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.datasets import load_breast_cancer data_set = pd.read_csv(‘pima-indians-diabetes.csv‘) data = data_set.values[:,:] y = data[:,8] X = data[:,:8] X_train,X_test,y_train,y_test = train_test_split(X,y) ### 随机森林 print("==========================================") RF = RandomForestClassifier(n_estimators=10,random_state=11) RF.fit(X_train,y_train) predictions = RF.predict(X_test) print("RF") print(classification_report(y_test,predictions)) print("AC",accuracy_score(y_test,predictions)) ### Logistic Regression Classifier print("==========================================") from sklearn.linear_model import LogisticRegression clf = LogisticRegression(penalty=‘l2‘) clf.fit(X_train,y_train) predictions = clf.predict(X_test) print("LR") print(classification_report(y_test,predictions)) print("AC",accuracy_score(y_test,predictions)) ### Decision Tree Classifier print("==========================================") from sklearn import tree clf = tree.DecisionTreeClassifier() clf.fit(X_train,y_train) predictions = clf.predict(X_test) print("DT") print(classification_report(y_test,predictions)) print("AC",accuracy_score(y_test,predictions)) ### GBDT(Gradient Boosting Decision Tree) Classifier print("==========================================") from sklearn.ensemble import GradientBoostingClassifier clf = GradientBoostingClassifier(n_estimators=200) clf.fit(X_train,y_train) predictions = clf.predict(X_test) print("GBDT") print(classification_report(y_test,predictions)) print("AC",accuracy_score(y_test,predictions)) ###AdaBoost Classifier print("==========================================") from sklearn.ensemble import AdaBoostClassifier clf = AdaBoostClassifier() clf.fit(X_train,y_train) predictions = clf.predict(X_test) print("AdaBoost") print(classification_report(y_test,predictions)) print("AC",accuracy_score(y_test,predictions)) ### GaussianNB print("==========================================") from sklearn.naive_bayes import GaussianNB clf = GaussianNB() clf.fit(X_train,y_train) predictions = clf.predict(X_test) print("GaussianNB") print(classification_report(y_test,predictions)) print("AC",accuracy_score(y_test,predictions)) ### Linear Discriminant Analysis print("==========================================") from sklearn.discriminant_analysis import LinearDiscriminantAnalysis clf = LinearDiscriminantAnalysis() clf.fit(X_train,y_train) predictions = clf.predict(X_test) print("Linear Discriminant Analysis") print(classification_report(y_test,predictions)) print("AC",accuracy_score(y_test,predictions)) ### Quadratic Discriminant Analysis print("==========================================") from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis clf = QuadraticDiscriminantAnalysis() clf.fit(X_train,y_train) predictions = clf.predict(X_test) print("Quadratic Discriminant Analysis") print(classification_report(y_test,predictions)) print("AC",accuracy_score(y_test,predictions)) ### SVM Classifier print("==========================================") from sklearn.svm import SVC clf = SVC(kernel=‘rbf‘, probability=True) clf.fit(X_train,y_train) predictions = clf.predict(X_test) print("SVM") print(classification_report(y_test,predictions)) print("AC",accuracy_score(y_test,predictions)) ### Multinomial Naive Bayes Classifier print("==========================================") from sklearn.naive_bayes import MultinomialNB clf = MultinomialNB(alpha=0.01) clf.fit(X_train,y_train) predictions = clf.predict(X_test) print("Multinomial Naive Bayes") print(classification_report(y_test,predictions)) print("AC",accuracy_score(y_test,predictions)) ### xgboost import xgboost print("==========================================") from sklearn.naive_bayes import MultinomialNB clf = xgboost.XGBClassifier() clf.fit(X_train,y_train) predictions = clf.predict(X_test) print("xgboost") print(classification_report(y_test,predictions)) print("AC",accuracy_score(y_test,predictions)) ### voting_classify from sklearn.ensemble import GradientBoostingClassifier, VotingClassifier, RandomForestClassifier import xgboost from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB clf1 = GradientBoostingClassifier(n_estimators=200) clf2 = RandomForestClassifier(random_state=0, n_estimators=500) # clf3 = LogisticRegression(random_state=1) # clf4 = GaussianNB() clf5 = xgboost.XGBClassifier() clf = VotingClassifier(estimators=[ # (‘gbdt‘,clf1), (‘rf‘,clf2), # (‘lr‘,clf3), # (‘nb‘,clf4), # (‘xgboost‘,clf5), ], voting=‘soft‘) clf.fit(X_train,y_train) predictions = clf.predict(X_test) print("voting_classify") print(classification_report(y_test,predictions)) print("AC",accuracy_score(y_test,predictions))
标签:gaussian code fit analysis san ima panda sklearn report
原文地址:https://www.cnblogs.com/caiyishuai/p/11385825.html