码迷,mamicode.com
首页 > 其他好文 > 详细

sklearn常见分类器(二分类模板)

时间:2019-08-20 21:59:07      阅读:124      评论:0      收藏:0      [点我收藏+]

标签:gaussian   code   fit   analysis   san   ima   panda   sklearn   report   

# -*- coding: utf-8 -*-
import pandas as pd
import matplotlib
matplotlib.rcParams[font.sans-serif]=[usimHei]
matplotlib.rcParams[axes.unicode_minus]=False
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_breast_cancer

data_set = pd.read_csv(pima-indians-diabetes.csv)
data = data_set.values[:,:]

y = data[:,8]
X = data[:,:8]
X_train,X_test,y_train,y_test = train_test_split(X,y)

### 随机森林
print("==========================================")   
RF = RandomForestClassifier(n_estimators=10,random_state=11)
RF.fit(X_train,y_train)
predictions = RF.predict(X_test)
print("RF")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions))


### Logistic Regression Classifier 
print("==========================================")      
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(penalty=l2)
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("LR")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions))
 
 
### Decision Tree Classifier    
print("==========================================")   
from sklearn import tree
clf = tree.DecisionTreeClassifier()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("DT")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions))

 
### GBDT(Gradient Boosting Decision Tree) Classifier    
print("==========================================")   
from sklearn.ensemble import GradientBoostingClassifier
clf = GradientBoostingClassifier(n_estimators=200)
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("GBDT")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions))

 
###AdaBoost Classifier
print("==========================================")   
from sklearn.ensemble import  AdaBoostClassifier
clf = AdaBoostClassifier()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("AdaBoost")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions))

 
### GaussianNB
print("==========================================")   
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("GaussianNB")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions))

 
### Linear Discriminant Analysis
print("==========================================")   
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
clf = LinearDiscriminantAnalysis()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("Linear Discriminant Analysis")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions))

 
### Quadratic Discriminant Analysis
print("==========================================")   
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
clf = QuadraticDiscriminantAnalysis()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("Quadratic Discriminant Analysis")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions))


### SVM Classifier 
print("==========================================")   
from sklearn.svm import SVC
clf = SVC(kernel=rbf, probability=True)
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("SVM")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions))


### Multinomial Naive Bayes Classifier
print("==========================================")       
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB(alpha=0.01)
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("Multinomial Naive Bayes")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions))


### xgboost
import xgboost
print("==========================================")       
from sklearn.naive_bayes import MultinomialNB
clf = xgboost.XGBClassifier()
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("xgboost")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions))


### voting_classify
from sklearn.ensemble import GradientBoostingClassifier, VotingClassifier, RandomForestClassifier
import xgboost
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
clf1 = GradientBoostingClassifier(n_estimators=200)
clf2 = RandomForestClassifier(random_state=0, n_estimators=500)
# clf3 = LogisticRegression(random_state=1)
# clf4 = GaussianNB()
clf5 = xgboost.XGBClassifier()
clf = VotingClassifier(estimators=[
    # (‘gbdt‘,clf1),
    (rf,clf2),
    # (‘lr‘,clf3),
    # (‘nb‘,clf4),
    # (‘xgboost‘,clf5),
    ],
    voting=soft)
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print("voting_classify")
print(classification_report(y_test,predictions))
print("AC",accuracy_score(y_test,predictions))

 

sklearn常见分类器(二分类模板)

标签:gaussian   code   fit   analysis   san   ima   panda   sklearn   report   

原文地址:https://www.cnblogs.com/caiyishuai/p/11385825.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!