码迷,mamicode.com
首页 > 其他好文 > 详细

Tensorflow机器学习入门——MINIST数据集识别

时间:2019-08-21 13:39:52      阅读:89      评论:0      收藏:0      [点我收藏+]

标签:机器学习   http   variables   准确率   计算   入门   from   pre   variable   

参考网站:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html

#自动下载并加载数据
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

#构建计算图
import tensorflow as tf
x = tf.placeholder("float", [None, 784])
y_ = tf.placeholder("float", [None,10])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W) + b)
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

#训练1000步
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
 
#验证准确率
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print (sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

 

Tensorflow机器学习入门——MINIST数据集识别

标签:机器学习   http   variables   准确率   计算   入门   from   pre   variable   

原文地址:https://www.cnblogs.com/Fengqiao/p/MINIST.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!